Spaces:
Sleeping
Sleeping
File size: 20,694 Bytes
ae64487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
from typing import (
List,
Dict,
Union,
Generator,
AsyncGenerator,
)
from aworld.config import ConfigDict
from aworld.config.conf import AgentConfig, ClientType
from aworld.logs.util import logger
from aworld.core.llm_provider_base import LLMProviderBase
from aworld.models.openai_provider import OpenAIProvider, AzureOpenAIProvider
from aworld.models.anthropic_provider import AnthropicProvider
from aworld.models.ant_provider import AntProvider
from aworld.models.model_response import ModelResponse
# Predefined model names for common providers
MODEL_NAMES = {
"anthropic": ["claude-3-5-sonnet-20241022", "claude-3-5-sonnet-20240620", "claude-3-opus-20240229"],
"openai": ["gpt-4o", "gpt-4", "gpt-3.5-turbo", "o3-mini", "gpt-4o-mini"],
"azure_openai": ["gpt-4", "gpt-4-turbo", "gpt-4o", "gpt-35-turbo"],
}
# Endpoint patterns for identifying providers
ENDPOINT_PATTERNS = {
"openai": ["api.openai.com"],
"anthropic": ["api.anthropic.com", "claude-api"],
"azure_openai": ["openai.azure.com"],
"ant": ["zdfmng.alipay.com"],
}
# Provider class mapping
PROVIDER_CLASSES = {
"openai": OpenAIProvider,
"anthropic": AnthropicProvider,
"azure_openai": AzureOpenAIProvider,
"ant": AntProvider,
}
class LLMModel:
"""Unified large model interface, encapsulates different model implementations, provides a unified completion method.
"""
def __init__(self, conf: Union[ConfigDict, AgentConfig] = None, custom_provider: LLMProviderBase = None, **kwargs):
"""Initialize unified model interface.
Args:
conf: Agent configuration, if provided, create model based on configuration.
custom_provider: Custom LLMProviderBase instance, if provided, use it directly.
**kwargs: Other parameters, may include:
- base_url: Specify model endpoint.
- api_key: API key.
- model_name: Model name.
- temperature: Temperature parameter.
"""
# If custom_provider instance is provided, use it directly
if custom_provider is not None:
if not isinstance(custom_provider, LLMProviderBase):
raise TypeError(
"custom_provider must be an instance of LLMProviderBase")
self.provider_name = "custom"
self.provider = custom_provider
return
# Get basic parameters
base_url = kwargs.get("base_url") or (
conf.llm_base_url if conf else None)
model_name = kwargs.get("model_name") or (
conf.llm_model_name if conf else None)
llm_provider = conf.llm_provider if conf_contains_key(
conf, "llm_provider") else None
# Get API key from configuration (if any)
if conf and conf.llm_api_key:
kwargs["api_key"] = conf.llm_api_key
# Identify provider
self.provider_name = self._identify_provider(
llm_provider, base_url, model_name)
# Fill basic parameters
kwargs['base_url'] = base_url
kwargs['model_name'] = model_name
# Fill parameters for llm provider
kwargs['sync_enabled'] = conf.llm_sync_enabled if conf_contains_key(
conf, "llm_sync_enabled") else True
kwargs['async_enabled'] = conf.llm_async_enabled if conf_contains_key(
conf, "llm_async_enabled") else True
kwargs['client_type'] = conf.llm_client_type if conf_contains_key(
conf, "llm_client_type") else ClientType.SDK
kwargs.update(self._transfer_conf_to_args(conf))
# Create model provider based on provider_name
self._create_provider(**kwargs)
def _transfer_conf_to_args(self, conf: Union[ConfigDict, AgentConfig] = None) -> dict:
"""
Transfer parameters from conf to args
Args:
conf: config object
"""
if not conf:
return {}
# Get all parameters from conf
if type(conf).__name__ == 'AgentConfig':
conf_dict = conf.model_dump()
else: # ConfigDict
conf_dict = conf
ignored_keys = ["llm_provider", "llm_base_url", "llm_model_name", "llm_api_key", "llm_sync_enabled",
"llm_async_enabled", "llm_client_type"]
args = {}
# Filter out used parameters and add remaining parameters to args
for key, value in conf_dict.items():
if key not in ignored_keys and value is not None:
args[key] = value
return args
def _identify_provider(self, provider: str = None, base_url: str = None, model_name: str = None) -> str:
"""Identify LLM provider.
Identification logic:
1. If provider is specified and doesn't need to be overridden, use the specified provider.
2. If base_url is provided, try to identify provider based on base_url.
3. If model_name is provided, try to identify provider based on model_name.
4. If none can be identified, default to "openai".
Args:
provider: Specified provider.
base_url: Service URL.
model_name: Model name.
Returns:
str: Identified provider.
"""
# Default provider
identified_provider = "openai"
# Identify provider based on base_url
if base_url:
for p, patterns in ENDPOINT_PATTERNS.items():
if any(pattern in base_url for pattern in patterns):
identified_provider = p
logger.info(
f"Identified provider: {identified_provider} based on base_url: {base_url}")
return identified_provider
# Identify provider based on model_name
if model_name and not base_url:
for p, models in MODEL_NAMES.items():
if model_name in models or any(model_name.startswith(model) for model in models):
identified_provider = p
logger.info(
f"Identified provider: {identified_provider} based on model_name: {model_name}")
break
if provider and provider in PROVIDER_CLASSES and identified_provider and identified_provider != provider:
logger.warning(
f"Provider mismatch: {provider} != {identified_provider}, using {provider} as provider")
identified_provider = provider
return identified_provider
def _create_provider(self, **kwargs):
"""Return the corresponding provider instance based on provider.
Args:
**kwargs: Parameters, may include:
- base_url: Model endpoint.
- api_key: API key.
- model_name: Model name.
- temperature: Temperature parameter.
- timeout: Timeout.
- max_retries: Maximum number of retries.
"""
self.provider = PROVIDER_CLASSES[self.provider_name](**kwargs)
@classmethod
def supported_providers(cls) -> list[str]:
return list(PROVIDER_CLASSES.keys())
def supported_models(self) -> list[str]:
"""Get supported models for the current provider.
Returns:
list: Supported models.
"""
return self.provider.supported_models() if self.provider else []
async def acompletion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> ModelResponse:
"""Asynchronously call model to generate response.
Args:
messages: Message list, format is [{"role": "system", "content": "..."}, {"role": "user", "content": "..."}].
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
ModelResponse: Unified model response object.
"""
# Call provider's acompletion method directly
return await self.provider.acompletion(
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stop=stop,
**kwargs
)
def completion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> ModelResponse:
"""Synchronously call model to generate response.
Args:
messages: Message list, format is [{"role": "system", "content": "..."}, {"role": "user", "content": "..."}].
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
ModelResponse: Unified model response object.
"""
# Call provider's completion method directly
return self.provider.completion(
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stop=stop,
**kwargs
)
def stream_completion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> Generator[ModelResponse, None, None]:
"""Synchronously call model to generate streaming response.
Args:
messages: Message list, format is [{"role": "system", "content": "..."}, {"role": "user", "content": "..."}].
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
Generator yielding ModelResponse chunks.
"""
# Call provider's stream_completion method directly
return self.provider.stream_completion(
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stop=stop,
**kwargs
)
async def astream_completion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> AsyncGenerator[ModelResponse, None]:
"""Asynchronously call model to generate streaming response.
Args:
messages: Message list, format is [{"role": "system", "content": "..."}, {"role": "user", "content": "..."}].
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters, may include:
- base_url: Specify model endpoint.
- api_key: API key.
- model_name: Model name.
Returns:
AsyncGenerator yielding ModelResponse chunks.
"""
# Call provider's astream_completion method directly
async for chunk in self.provider.astream_completion(
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stop=stop,
**kwargs
):
yield chunk
def speech_to_text(self,
audio_file: str,
language: str = None,
prompt: str = None,
**kwargs) -> ModelResponse:
"""Convert speech to text.
Args:
audio_file: Path to audio file or file object.
language: Audio language, optional.
prompt: Transcription prompt, optional.
**kwargs: Other parameters.
Returns:
ModelResponse: Unified model response object, with content field containing the transcription result.
Raises:
LLMResponseError: When LLM response error occurs.
NotImplementedError: When provider does not support speech to text conversion.
"""
return self.provider.speech_to_text(
audio_file=audio_file,
language=language,
prompt=prompt,
**kwargs
)
async def aspeech_to_text(self,
audio_file: str,
language: str = None,
prompt: str = None,
**kwargs) -> ModelResponse:
"""Asynchronously convert speech to text.
Args:
audio_file: Path to audio file or file object.
language: Audio language, optional.
prompt: Transcription prompt, optional.
**kwargs: Other parameters.
Returns:
ModelResponse: Unified model response object, with content field containing the transcription result.
Raises:
LLMResponseError: When LLM response error occurs.
NotImplementedError: When provider does not support speech to text conversion.
"""
return await self.provider.aspeech_to_text(
audio_file=audio_file,
language=language,
prompt=prompt,
**kwargs
)
def register_llm_provider(provider: str, provider_class: type):
"""Register a custom LLM provider.
Args:
provider: Provider name.
provider_class: Provider class, must inherit from LLMProviderBase.
"""
if not issubclass(provider_class, LLMProviderBase):
raise TypeError("provider_class must be a subclass of LLMProviderBase")
PROVIDER_CLASSES[provider] = provider_class
def conf_contains_key(conf: Union[ConfigDict, AgentConfig], key: str) -> bool:
"""Check if conf contains key.
Args:
conf: Config object.
key: Key to check.
Returns:
bool: Whether conf contains key.
"""
if not conf:
return False
if type(conf).__name__ == 'AgentConfig':
return hasattr(conf, key)
else:
return key in conf
def get_llm_model(conf: Union[ConfigDict, AgentConfig] = None,
custom_provider: LLMProviderBase = None,
**kwargs) -> Union[LLMModel, 'ChatOpenAI']:
"""Get a unified LLM model instance.
Args:
conf: Agent configuration, if provided, create model based on configuration.
custom_provider: Custom LLMProviderBase instance, if provided, use it directly.
**kwargs: Other parameters, may include:
- base_url: Specify model endpoint.
- api_key: API key.
- model_name: Model name.
- temperature: Temperature parameter.
Returns:
Unified model interface.
"""
# Create and return LLMModel instance directly
llm_provider = conf.llm_provider if conf_contains_key(
conf, "llm_provider") else None
if (llm_provider == "chatopenai"):
from langchain_openai import ChatOpenAI
base_url = kwargs.get("base_url") or (
conf.llm_base_url if conf_contains_key(conf, "llm_base_url") else None)
model_name = kwargs.get("model_name") or (
conf.llm_model_name if conf_contains_key(conf, "llm_model_name") else None)
api_key = kwargs.get("api_key") or (
conf.llm_api_key if conf_contains_key(conf, "llm_api_key") else None)
return ChatOpenAI(
model=model_name,
temperature=kwargs.get("temperature", conf.llm_temperature if conf_contains_key(
conf, "llm_temperature") else 0.0),
base_url=base_url,
api_key=api_key,
)
return LLMModel(conf=conf, custom_provider=custom_provider, **kwargs)
def call_llm_model(
llm_model: LLMModel,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
stream: bool = False,
**kwargs
) -> Union[ModelResponse, Generator[ModelResponse, None, None]]:
"""Convenience function to call LLM model.
Args:
llm_model: LLM model instance.
messages: Message list.
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
stream: Whether to return a streaming response.
**kwargs: Other parameters.
Returns:
Model response or response generator.
"""
if stream:
return llm_model.stream_completion(
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stop=stop,
**kwargs
)
else:
return llm_model.completion(
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stop=stop,
**kwargs
)
async def acall_llm_model(
llm_model: LLMModel,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
stream: bool = False,
**kwargs
) -> ModelResponse:
"""Convenience function to asynchronously call LLM model.
Args:
llm_model: LLM model instance.
messages: Message list.
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
stream: Whether to return a streaming response.
**kwargs: Other parameters.
Returns:
Model response or response generator.
"""
return await llm_model.acompletion(
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stop=stop,
**kwargs
)
async def acall_llm_model_stream(
llm_model: LLMModel,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs
) -> AsyncGenerator[ModelResponse, None]:
async for chunk in llm_model.astream_completion(
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stop=stop,
**kwargs
):
yield chunk
def speech_to_text(
llm_model: LLMModel,
audio_file: str,
language: str = None,
prompt: str = None,
**kwargs
) -> ModelResponse:
"""Convenience function to convert speech to text.
Args:
llm_model: LLM model instance.
audio_file: Path to audio file or file object.
language: Audio language, optional.
prompt: Transcription prompt, optional.
**kwargs: Other parameters.
Returns:
ModelResponse: Unified model response object, with content field containing the transcription result.
"""
if llm_model.provider_name != "openai":
raise NotImplementedError(
f"Speech-to-text functionality is currently only supported for OpenAI compatible provider, current provider: {llm_model.provider_name}")
return llm_model.speech_to_text(
audio_file=audio_file,
language=language,
prompt=prompt,
**kwargs
)
async def aspeech_to_text(
llm_model: LLMModel,
audio_file: str,
language: str = None,
prompt: str = None,
**kwargs
) -> ModelResponse:
"""Convenience function to asynchronously convert speech to text.
Args:
llm_model: LLM model instance.
audio_file: Path to audio file or file object.
language: Audio language, optional.
prompt: Transcription prompt, optional.
**kwargs: Other parameters.
Returns:
ModelResponse: Unified model response object, with content field containing the transcription result.
"""
if llm_model.provider_name != "openai":
raise NotImplementedError(
f"Speech-to-text functionality is currently only supported for OpenAI compatible provider, current provider: {llm_model.provider_name}")
return await llm_model.aspeech_to_text(
audio_file=audio_file,
language=language,
prompt=prompt,
**kwargs
)
|