File size: 26,457 Bytes
ae64487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import os
from typing import Any, Dict, List, Generator, AsyncGenerator

from openai import OpenAI, AsyncOpenAI

from aworld.config.conf import ClientType
from aworld.core.llm_provider_base import LLMProviderBase
from aworld.models.llm_http_handler import LLMHTTPHandler
from aworld.models.model_response import ModelResponse, LLMResponseError
from aworld.logs.util import logger
from aworld.models.utils import usage_process


class OpenAIProvider(LLMProviderBase):
    """OpenAI provider implementation.
    """

    def _init_provider(self):
        """Initialize OpenAI provider.
        
        Returns:
            OpenAI provider instance.
        """
        # Get API key
        api_key = self.api_key
        if not api_key:
            env_var = "OPENAI_API_KEY"
            api_key = os.getenv(env_var, "")
            if not api_key:
                raise ValueError(
                    f"OpenAI API key not found, please set {env_var} environment variable or provide it in the parameters")
        base_url = self.base_url
        if not base_url:
            base_url = os.getenv("OPENAI_ENDPOINT", "https://api.openai.com/v1")

        self.is_http_provider = False
        if self.kwargs.get("client_type", ClientType.SDK) == ClientType.HTTP:
            logger.info(f"Using HTTP provider for OpenAI")
            self.http_provider = LLMHTTPHandler(
                base_url=base_url,
                api_key=api_key,
                model_name=self.model_name,
                max_retries=self.kwargs.get("max_retries", 3)
            )
            self.is_http_provider = True
            return self.http_provider
        else:
            return OpenAI(
                api_key=api_key,
                base_url=base_url,
                timeout=self.kwargs.get("timeout", 180),
                max_retries=self.kwargs.get("max_retries", 3)
            )

    def _init_async_provider(self):
        """Initialize async OpenAI provider.

        Returns:
            Async OpenAI provider instance.
        """
        # Get API key
        api_key = self.api_key
        if not api_key:
            env_var = "OPENAI_API_KEY"
            api_key = os.getenv(env_var, "")
            if not api_key:
                raise ValueError(
                    f"OpenAI API key not found, please set {env_var} environment variable or provide it in the parameters")
        base_url = self.base_url
        if not base_url:
            base_url = os.getenv("OPENAI_ENDPOINT", "https://api.openai.com/v1")

        return AsyncOpenAI(
            api_key=api_key,
            base_url=base_url,
            timeout=self.kwargs.get("timeout", 180),
            max_retries=self.kwargs.get("max_retries", 3)
        )

    @classmethod
    def supported_models(cls) -> list[str]:
        return ["gpt-4o", "gpt-4", "gpt-3.5-turbo", "o3-mini", "gpt-4o-mini", "deepseek-chat", "deepseek-reasoner",
                r"qwq-.*", r"qwen-.*"]

    def preprocess_messages(self, messages: List[Dict[str, str]]) -> List[Dict[str, str]]:
        """Preprocess messages, use OpenAI format directly.

        Args:
            messages: OpenAI format message list.

        Returns:
            Processed message list.
        """
        for message in messages:
            if message["role"] == "assistant" and "tool_calls" in message and message["tool_calls"]:
                if message["content"] is None: message["content"] = ""
                for tool_call in message["tool_calls"]:
                    if "function" not in tool_call and "name" in tool_call and "arguments" in tool_call:
                        tool_call["function"] = {"name": tool_call["name"], "arguments": tool_call["arguments"]}

        return messages

    def postprocess_response(self, response: Any) -> ModelResponse:
        """Process OpenAI response.

        Args:
            response: OpenAI response object.

        Returns:
            ModelResponse object.
            
        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if ((not isinstance(response, dict) and (not hasattr(response, 'choices') or not response.choices))
                or (isinstance(response, dict) and not response.get("choices"))):
            error_msg = ""
            if hasattr(response, 'error') and response.error and isinstance(response.error, dict):
                error_msg = response.error.get('message', '')
            elif hasattr(response, 'msg'):
                error_msg = response.msg

            raise LLMResponseError(
                error_msg if error_msg else "Unknown error",
                self.model_name or "unknown",
                response
            )

        return ModelResponse.from_openai_response(response)

    def postprocess_stream_response(self, chunk: Any) -> ModelResponse:
        """Process OpenAI streaming response chunk.

        Args:
            chunk: OpenAI response chunk.

        Returns:
            ModelResponse object.
            
        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        # Check if chunk contains error
        if hasattr(chunk, 'error') or (isinstance(chunk, dict) and chunk.get('error')):
            error_msg = chunk.error if hasattr(chunk, 'error') else chunk.get('error', 'Unknown error')
            raise LLMResponseError(
                error_msg,
                self.model_name or "unknown",
                chunk
            )

        # process tool calls
        if (hasattr(chunk, 'choices') and chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.tool_calls) or (
                isinstance(chunk, dict) and chunk.get("choices") and chunk["choices"] and chunk["choices"][0].get("delta", {}).get("tool_calls")):
            tool_calls = chunk.choices[0].delta.tool_calls if hasattr(chunk, 'choices') else chunk["choices"][0].get("delta", {}).get("tool_calls")

            for tool_call in tool_calls:
                index = tool_call.index if hasattr(tool_call, 'index') else tool_call["index"]
                func_name = tool_call.function.name if hasattr(tool_call, 'function') else tool_call.get("function", {}).get("name")
                func_args = tool_call.function.arguments if hasattr(tool_call, 'function') else tool_call.get("function", {}).get("arguments")
                if index >= len(self.stream_tool_buffer):
                    self.stream_tool_buffer.append({
                        "id": tool_call.id if hasattr(tool_call, 'id') else tool_call.get("id"),
                        "type": "function",
                        "function": {
                            "name": func_name,
                            "arguments": func_args
                        }
                    })
                else:
                    self.stream_tool_buffer[index]["function"]["arguments"] += func_args
            processed_chunk = chunk
            if hasattr(processed_chunk, 'choices'):
                processed_chunk.choices[0].delta.tool_calls = None
            else:
                processed_chunk["choices"][0]["delta"]["tool_calls"] = None
            resp = ModelResponse.from_openai_stream_chunk(processed_chunk)
            if (not resp.content and not resp.usage.get("total_tokens", 0)):
                return None
        if (hasattr(chunk, 'choices') and chunk.choices and chunk.choices[0].finish_reason) or (
                isinstance(chunk, dict) and chunk.get("choices") and chunk["choices"] and chunk["choices"][0].get(
            "finish_reason")):
            finish_reason = chunk.choices[0].finish_reason if hasattr(chunk, 'choices') else chunk["choices"][0].get(
                "finish_reason")
            if self.stream_tool_buffer:
                tool_call_chunk = {
                    "id": chunk.id if hasattr(chunk, 'id') else chunk.get("id"),
                    "model": chunk.model if hasattr(chunk, 'model') else chunk.get("model"),
                    "object": chunk.object if hasattr(chunk, 'object') else chunk.get("object"),
                    "choices": [
                        {
                            "delta": {
                                "role": "assistant",
                                "content": "",
                                "tool_calls": self.stream_tool_buffer
                            }
                        }
                    ]
                }
                self.stream_tool_buffer = []
                return ModelResponse.from_openai_stream_chunk(tool_call_chunk)

        return ModelResponse.from_openai_stream_chunk(chunk)

    def completion(self,
                   messages: List[Dict[str, str]],
                   temperature: float = 0.0,
                   max_tokens: int = None,
                   stop: List[str] = None,
                   **kwargs) -> ModelResponse:
        """Synchronously call OpenAI to generate response.
        
        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            ModelResponse object.
            
        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if not self.provider:
            raise RuntimeError(
                "Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")

        processed_messages = self.preprocess_messages(messages)

        try:
            openai_params = self.get_openai_params(processed_messages, temperature, max_tokens, stop, **kwargs)
            if self.is_http_provider:
                response = self.http_provider.sync_call(openai_params)
            else:
                response = self.provider.chat.completions.create(**openai_params)

            if (hasattr(response, 'code') and response.code != 0) or (
                    isinstance(response, dict) and response.get("code", 0) != 0):
                error_msg = getattr(response, 'msg', 'Unknown error')
                logger.warn(f"API Error: {error_msg}")
                raise LLMResponseError(error_msg, kwargs.get("model_name", self.model_name or "unknown"), response)

            if not response:
                raise LLMResponseError("Empty response", kwargs.get("model_name", self.model_name or "unknown"))

            resp = self.postprocess_response(response)
            usage_process(resp.usage)
            return resp
        except Exception as e:
            if isinstance(e, LLMResponseError):
                raise e
            logger.warn(f"Error in OpenAI completion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))

    def stream_completion(self,
                          messages: List[Dict[str, str]],
                          temperature: float = 0.0,
                          max_tokens: int = None,
                          stop: List[str] = None,
                          **kwargs) -> Generator[ModelResponse, None, None]:
        """Synchronously call OpenAI to generate streaming response.
        
        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            Generator yielding ModelResponse chunks.
            
        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if not self.provider:
            raise RuntimeError(
                "Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")

        processed_messages = self.preprocess_messages(messages)
        usage={
            "completion_tokens": 0,
            "prompt_tokens": 0,
            "total_tokens": 0
        }

        try:
            openai_params = self.get_openai_params(processed_messages, temperature, max_tokens, stop, **kwargs)
            openai_params["stream"] = True
            if self.is_http_provider:
                response_stream = self.http_provider.sync_stream_call(openai_params)
            else:
                response_stream = self.provider.chat.completions.create(**openai_params)

            for chunk in response_stream:
                if not chunk:
                    continue
                resp = self.postprocess_stream_response(chunk)
                if resp:
                    self._accumulate_chunk_usage(usage, resp.usage)
                    yield resp
            usage_process(usage)

        except Exception as e:
            logger.warn(f"Error in stream_completion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))

    async def astream_completion(self,
                                 messages: List[Dict[str, str]],
                                 temperature: float = 0.0,
                                 max_tokens: int = None,
                                 stop: List[str] = None,
                                 **kwargs) -> AsyncGenerator[ModelResponse, None]:
        """Asynchronously call OpenAI to generate streaming response.
        
        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            AsyncGenerator yielding ModelResponse chunks.
            
        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if not self.async_provider:
            raise RuntimeError(
                "Async provider not initialized. Make sure 'async_enabled' parameter is set to True in initialization.")

        processed_messages = self.preprocess_messages(messages)
        usage = {
            "completion_tokens": 0,
            "prompt_tokens": 0,
            "total_tokens": 0
        }

        try:
            openai_params = self.get_openai_params(processed_messages, temperature, max_tokens, stop, **kwargs)
            openai_params["stream"] = True

            if self.is_http_provider:
                async for chunk in self.http_provider.async_stream_call(openai_params):
                    if not chunk:
                        continue
                    resp = self.postprocess_stream_response(chunk)
                    self._accumulate_chunk_usage(usage, resp.usage)
                    yield resp
            else:
                response_stream = await self.async_provider.chat.completions.create(**openai_params)
                async for chunk in response_stream:
                    if not chunk:
                        continue
                    resp = self.postprocess_stream_response(chunk)
                    if resp:
                        self._accumulate_chunk_usage(usage, resp.usage)
                        yield resp
            usage_process(usage)

        except Exception as e:
            logger.warn(f"Error in astream_completion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))

    async def acompletion(self,
                          messages: List[Dict[str, str]],
                          temperature: float = 0.0,
                          max_tokens: int = None,
                          stop: List[str] = None,
                          **kwargs) -> ModelResponse:
        """Asynchronously call OpenAI to generate response.
        
        Args:
            messages: Message list.
            temperature: Temperature parameter.
            max_tokens: Maximum number of tokens to generate.
            stop: List of stop sequences.
            **kwargs: Other parameters.

        Returns:
            ModelResponse object.
            
        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if not self.async_provider:
            raise RuntimeError(
                "Async provider not initialized. Make sure 'async_enabled' parameter is set to True in initialization.")

        processed_messages = self.preprocess_messages(messages)

        try:
            openai_params = self.get_openai_params(processed_messages, temperature, max_tokens, stop, **kwargs)
            if self.is_http_provider:
                response = await self.http_provider.async_call(openai_params)
            else:
                response = await self.async_provider.chat.completions.create(**openai_params)

            if (hasattr(response, 'code') and response.code != 0) or (
                    isinstance(response, dict) and response.get("code", 0) != 0):
                error_msg = getattr(response, 'msg', 'Unknown error')
                logger.warn(f"API Error: {error_msg}")
                raise LLMResponseError(error_msg, kwargs.get("model_name", self.model_name or "unknown"), response)

            if not response:
                raise LLMResponseError("Empty response", kwargs.get("model_name", self.model_name or "unknown"))

            resp = self.postprocess_response(response)
            usage_process(resp.usage)
            return resp
        except Exception as e:
            if isinstance(e, LLMResponseError):
                raise e
            logger.warn(f"Error in acompletion: {e}")
            raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))

    def get_openai_params(self,
                          messages: List[Dict[str, str]],
                          temperature: float = 0.0,
                          max_tokens: int = None,
                          stop: List[str] = None,
                          **kwargs) -> Dict[str, Any]:
        openai_params = {
            "model": kwargs.get("model_name", self.model_name or ""),
            "messages": messages,
            "temperature": temperature,
            "max_tokens": max_tokens,
            "stop": stop
        }

        supported_params = [
            "max_completion_tokens", "meta_data", "modalities", "n", "parallel_tool_calls",
            "prediction", "reasoning_effort", "service_tier", "stream_options", "web_search_options"
            "frequency_penalty", "logit_bias", "logprobs", "top_logprobs",
            "presence_penalty", "response_format", "seed", "stream", "top_p",
            "user", "function_call", "functions", "tools", "tool_choice"
        ]

        for param in supported_params:
            if param in kwargs:
                openai_params[param] = kwargs[param]

        return openai_params

    def speech_to_text(self,
                       audio_file: str,
                       language: str = None,
                       prompt: str = None,
                       **kwargs) -> ModelResponse:
        """Convert speech to text.

        Uses OpenAI's speech-to-text API to convert audio files to text.

        Args:
            audio_file: Path to audio file or file object.
            language: Audio language, optional.
            prompt: Transcription prompt, optional.
            **kwargs: Other parameters, may include:
                - model: Transcription model name, defaults to "whisper-1".
                - response_format: Response format, defaults to "text".
                - temperature: Sampling temperature, defaults to 0.

        Returns:
            ModelResponse: Unified model response object, with content field containing the transcription result.

        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if not self.provider:
            raise RuntimeError(
                "Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")

        try:
            # Prepare parameters
            transcription_params = {
                "model": kwargs.get("model", "whisper-1"),
                "response_format": kwargs.get("response_format", "text"),
                "temperature": kwargs.get("temperature", 0)
            }

            # Add optional parameters
            if language:
                transcription_params["language"] = language
            if prompt:
                transcription_params["prompt"] = prompt

            # Open file (if path is provided)
            if isinstance(audio_file, str):
                with open(audio_file, "rb") as file:
                    transcription_response = self.provider.audio.transcriptions.create(
                        file=file,
                        **transcription_params
                    )
            else:
                # If already a file object
                transcription_response = self.provider.audio.transcriptions.create(
                    file=audio_file,
                    **transcription_params
                )

            # Create ModelResponse
            return ModelResponse(
                id=f"stt-{hash(str(transcription_response)) & 0xffffffff:08x}",
                model=transcription_params["model"],
                content=transcription_response.text if hasattr(transcription_response, 'text') else str(
                    transcription_response),
                raw_response=transcription_response,
                message={
                    "role": "assistant",
                    "content": transcription_response.text if hasattr(transcription_response, 'text') else str(
                        transcription_response)
                }
            )
        except Exception as e:
            logger.warn(f"Speech-to-text error: {e}")
            raise LLMResponseError(str(e), kwargs.get("model", "whisper-1"))

    async def aspeech_to_text(self,
                              audio_file: str,
                              language: str = None,
                              prompt: str = None,
                              **kwargs) -> ModelResponse:
        """Asynchronously convert speech to text.

        Uses OpenAI's speech-to-text API to convert audio files to text.

        Args:
            audio_file: Path to audio file or file object.
            language: Audio language, optional.
            prompt: Transcription prompt, optional.
            **kwargs: Other parameters, may include:
                - model: Transcription model name, defaults to "whisper-1".
                - response_format: Response format, defaults to "text".
                - temperature: Sampling temperature, defaults to 0.

        Returns:
            ModelResponse: Unified model response object, with content field containing the transcription result.

        Raises:
            LLMResponseError: When LLM response error occurs.
        """
        if not self.async_provider:
            raise RuntimeError(
                "Async provider not initialized. Make sure 'async_enabled' parameter is set to True in initialization.")

        try:
            # Prepare parameters
            transcription_params = {
                "model": kwargs.get("model", "whisper-1"),
                "response_format": kwargs.get("response_format", "text"),
                "temperature": kwargs.get("temperature", 0)
            }

            # Add optional parameters
            if language:
                transcription_params["language"] = language
            if prompt:
                transcription_params["prompt"] = prompt

            # Open file (if path is provided)
            if isinstance(audio_file, str):
                with open(audio_file, "rb") as file:
                    transcription_response = await self.async_provider.audio.transcriptions.create(
                        file=file,
                        **transcription_params
                    )
            else:
                # If already a file object
                transcription_response = await self.async_provider.audio.transcriptions.create(
                    file=audio_file,
                    **transcription_params
                )

            # Create ModelResponse
            return ModelResponse(
                id=f"stt-{hash(str(transcription_response)) & 0xffffffff:08x}",
                model=transcription_params["model"],
                content=transcription_response.text if hasattr(transcription_response, 'text') else str(
                    transcription_response),
                raw_response=transcription_response,
                message={
                    "role": "assistant",
                    "content": transcription_response.text if hasattr(transcription_response, 'text') else str(
                        transcription_response)
                }
            )
        except Exception as e:
            logger.warn(f"Async speech-to-text error: {e}")
            raise LLMResponseError(str(e), kwargs.get("model", "whisper-1"))


class AzureOpenAIProvider(OpenAIProvider):
    """Azure OpenAI provider implementation.
    """

    def _init_provider(self):
        """Initialize Azure OpenAI provider.

        Returns:
            Azure OpenAI provider instance.
        """
        from langchain_openai import AzureChatOpenAI

        # Get API key
        api_key = self.api_key
        if not api_key:
            env_var = "AZURE_OPENAI_API_KEY"
            api_key = os.getenv(env_var, "")
            if not api_key:
                raise ValueError(
                    f"Azure OpenAI API key not found, please set {env_var} environment variable or provide it in the parameters")

        # Get API version
        api_version = self.kwargs.get("api_version", "") or os.getenv("AZURE_OPENAI_API_VERSION", "2025-01-01-preview")

        # Get endpoint
        azure_endpoint = self.base_url
        if not azure_endpoint:
            azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT", "")
            if not azure_endpoint:
                raise ValueError(
                    "Azure OpenAI endpoint not found, please set AZURE_OPENAI_ENDPOINT environment variable or provide it in the parameters")

        return AzureChatOpenAI(
            model=self.model_name or "gpt-4o",
            temperature=self.kwargs.get("temperature", 0.0),
            api_version=api_version,
            azure_endpoint=azure_endpoint,
            api_key=api_key
        )