Spaces:
Sleeping
Sleeping
File size: 14,734 Bytes
3e8c06e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import json
import logging
from builtins import anext
from datetime import datetime
from typing import Any, Dict, Generator, AsyncGenerator, Optional
from pydantic import Field, BaseModel, model_validator
from aworld.models.model_response import ModelResponse, ToolCall
class OutputPart(BaseModel):
content: Any
metadata: Optional[Dict[str, Any]] = Field(default_factory=dict, description="metadata")
@model_validator(mode='after')
def setup_metadata(self):
# Ensure metadata is initialized
if self.metadata is None:
self.metadata = {}
return self
class Output(BaseModel):
metadata: Optional[Dict[str, Any]] = Field(default_factory=dict, description="metadata")
parts: Any = Field(default_factory=list, exclude=True, description="parts of Output")
data: Any = Field(default=None, exclude=True, description="Output Data")
@model_validator(mode='after')
def setup_defaults(self):
# Ensure metadata and parts are initialized
if self.metadata is None:
self.metadata = {}
if self.parts is None:
self.parts = []
return self
def add_part(self, content: Any):
if self.parts is None:
self.parts = []
self.parts.append(OutputPart(content=content))
def output_type(self):
return "default"
class ToolCallOutput(Output):
@classmethod
def from_tool_call(cls, tool_call: ToolCall):
return cls(data = tool_call)
def output_type(self):
return "tool_call"
class ToolResultOutput(Output):
origin_tool_call: Optional[ToolCall] = Field(default=None, description="origin tool call", exclude=True)
image: str = Field(default=None)
images: list[str] = Field(default_factory=list)
tool_type: str = Field(default=None)
tool_name: str = Field(default=None)
def output_type(self):
return "tool_call_result"
pass
class RunFinishedSignal(Output):
def output_type(self):
return "finished_signal"
RUN_FINISHED_SIGNAL = RunFinishedSignal()
class MessageOutput(Output):
"""
MessageOutput structure of LLM output
if you want to get the only response, you must first call reasoning_generator or set parameter only_response to True , then call response_generator
if you model not reasoning, you do not need care about reasoning_generator and reasoning
1. source: async/sync generator of the message
2. reasoning_generator: async/sync reasoning generator of the message
3. response_generator: async/sync response generator of the message;
4. reasoning: reasoning of the message
5. response: response of the message
6. tool_calls
"""
source: Any = Field(default=None, exclude=True, description="Source of the message")
reason_generator: Any = Field(default=None, exclude=True, description="reasoning generator of the message")
response_generator: Any = Field(default=None, exclude=True, description="response generator of the message")
"""
result
"""
reasoning: str = Field(default=None, description="reasoning of the message")
response: Any = Field(default=None, description="response of the message")
tool_calls: list[ToolCallOutput] = Field(default_factory=list, description="tool_calls")
"""
other config
"""
reasoning_format_start: str = Field(default="<think>", description="reasoning format start of the message")
reasoning_format_end: str = Field(default="</think>", description="reasoning format end of the message")
json_parse: bool = Field(default=False, description="json parse of the message", exclude=True)
has_reasoning: bool = Field(default=False, description="has reasoning of the message")
finished: bool = Field(default=False, description="finished of the message")
@model_validator(mode='after')
def setup_generators(self):
"""
Setup generators for reasoning and response
"""
source = self.source
# if ModelResponse
if isinstance(self.source, ModelResponse):
source = self.source.content
if self.source.tool_calls:
[self.tool_calls.append(ToolCallOutput.from_tool_call(tool_call)) for tool_call in
self.source.tool_calls]
if source is not None and isinstance(source, AsyncGenerator):
# Create empty generators first, they will be initialized when actually used
self.reason_generator = self.__aget_reasoning_generator()
self.response_generator = self.__aget_response_generator()
elif source is not None and isinstance(source, Generator):
self.reason_generator, self.response_generator = self.__split_reasoning_and_response__()
elif source is not None and isinstance(source, str):
self.reasoning, self.response = self.__resolve_think__(source)
return self
async def get_finished_reasoning(self):
if self.reasoning:
return self.reasoning
else:
if self.has_reasoning and not self.reasoning:
async for reason in self.reason_generator:
pass
return self.reasoning
else:
return self.reasoning
async def get_finished_response(self):
if self.response:
return self.response
else:
if self.response_generator:
async for item in self.response_generator:
pass
return self.response
async def __aget_reasoning_generator(self) -> AsyncGenerator[str, None]:
"""
Get reasoning content as async generator
"""
if not self.has_reasoning:
yield ""
self.reasoning = ""
return
reasoning_buffer = ""
is_in_reasoning = False
if self.reasoning and len(self.reasoning) > 0:
yield self.reasoning
return
try:
while True:
chunk = await anext(self.source)
chunk_content = self.get_chunk_content(chunk)
if not chunk_content:
continue
if chunk_content.startswith(self.reasoning_format_start):
is_in_reasoning = True
reasoning_buffer = chunk_content
yield chunk_content
elif chunk_content.endswith(self.reasoning_format_end) and is_in_reasoning:
reasoning_buffer += chunk_content
yield chunk_content
self.reasoning = reasoning_buffer
break
elif is_in_reasoning:
reasoning_buffer += chunk_content
yield chunk_content
except StopAsyncIteration:
logging.info("StopAsyncIteration")
async def __aget_response_generator(self) -> AsyncGenerator[str, None]:
"""
Get response content as async generator
if has_reasoning is True, system will first call reasoning_generator if you not call it;
else it will return content contains reasoning and response
"""
response_buffer = ""
if self.response and len(self.response) > 0:
yield self.response
return
# if has_reasoning is True, system will first call reasoning_generator if you not call it;
if self.has_reasoning and not self.reasoning:
async for reason in self.reason_generator:
pass
try:
while True:
chunk = await anext(self.source)
chunk_content = self.get_chunk_content(chunk)
if not chunk_content:
continue
response_buffer += chunk_content
yield chunk_content
except StopAsyncIteration:
self.finished = True
self.response = self.__resolve_json__(response_buffer, self.json_parse)
def get_chunk_content(self, chunk):
if isinstance(chunk, ModelResponse):
return chunk.content
else:
return chunk
def __split_reasoning_and_response__(self) -> tuple[Generator[str, None, None], Generator[str, None, None]]: # type: ignore
"""
Split source into reasoning and response generators for sync source
Returns:
tuple: (reasoning_generator, response_generator)
"""
if not self.has_reasoning:
yield ""
self.reasoning = ""
return
if not isinstance(self.source, Generator):
raise ValueError("Source must be a Generator")
def reasoning_generator():
if self.reasoning and len(self.reasoning) > 0:
yield self.reasoning
return
reasoning_buffer = ""
is_in_reasoning = False
try:
while True:
chunk = next(self.source)
chunk_content = self.get_chunk_content(chunk)
if chunk_content.startswith(self.reasoning_format_start):
is_in_reasoning = True
reasoning_buffer = chunk_content
yield chunk_content
elif chunk_content.endswith(self.reasoning_format_end) and is_in_reasoning:
reasoning_buffer += chunk_content
self.reasoning = reasoning_buffer
yield chunk_content
break
elif is_in_reasoning:
yield chunk_content
reasoning_buffer += chunk_content
except StopIteration:
print("StopIteration")
self.reasoning = reasoning_buffer
def response_generator():
if self.response and len(self.response) > 0:
yield self.response
return
# if has_reasoning is True, system will first call reasoning_generator if you not call it;
if self.has_reasoning and not self.reasoning:
for reason in self.reason_generator:
pass
response_buffer = ""
try:
while True:
chunk = next(self.source)
chunk_content = self.get_chunk_content(chunk)
response_buffer += chunk_content
self.response = response_buffer
yield chunk_content
except StopIteration:
self.response = self.__resolve_json__(response_buffer,self.json_parse)
self.finished = True
return reasoning_generator(), response_generator()
def __resolve_think__(self, content):
import re
start_tag = self.reasoning_format_start.replace("<", "").replace(">", "")
end_tag = self.reasoning_format_end.replace("<", "").replace(">", "")
llm_think = ""
match = re.search(
rf"<{re.escape(start_tag)}(.*?)>(.|\n)*?<{re.escape(end_tag)}>",
content,
flags=re.DOTALL,
)
if match:
llm_think = match.group(0).replace("<think>", "").replace("</think>", "")
llm_result = re.sub(
rf"<{re.escape(start_tag)}(.*?)>(.|\n)*?<{re.escape(end_tag)}>",
"",
content,
flags=re.DOTALL,
)
llm_result = self.__resolve_json__(llm_result, self.json_parse)
return llm_think, llm_result
def __resolve_json__(self, content, json_parse = False):
if json_parse:
if content.__contains__("```json"):
content = content.replace("```json", "").replace("```", "")
return json.loads(content)
return content
def output_type(self):
return "message_output"
class StepOutput(Output):
name: str
step_num: int
alias_name: Optional[str] = Field(default=None, description="alias_name of the step")
status: Optional[str] = Field(default="START", description="step_status")
started_at: str = Field(default_factory=lambda: datetime.now().isoformat(), description="started at")
finished_at: str = Field(default_factory=lambda: datetime.now().isoformat(), description="finished at")
@classmethod
def build_start_output(cls, name, step_num, alias_name=None, data=None):
return cls(name=name, step_num=step_num, alias_name=alias_name, data=data)
@classmethod
def build_finished_output(cls, name, step_num, alias_name=None, data=None):
return cls(name=name, step_num=step_num, alias_name=alias_name, status='FINISHED', data=data)
@classmethod
def build_failed_output(cls, name, step_num, alias_name=None, data=None):
return cls(name=name, step_num=step_num, alias_name=alias_name, status='FAILED', data=data)
def output_type(self):
return "step_output"
@property
def show_name(self):
return self.alias_name if self.alias_name else self.name
class SearchItem(BaseModel):
title: str = Field(default="", description="search result title")
url: str = Field(default="", description="search result url")
snippet: str = Field(default="", description="search result snippet")
content: str = Field(default="", description="search content", exclude=True)
raw_content: Optional[str] = Field(default="", description="search raw content", exclude=True)
metadata: Optional[Dict[str, Any]] = Field(default_factory=dict, description="metadata")
class SearchOutput(ToolResultOutput):
query: str = Field(..., description="Search query string")
results: list[SearchItem] = Field(default_factory=list, description="List of search results")
@classmethod
def from_dict(cls, data: dict) -> "SearchOutput":
if not isinstance(data, dict):
data = {}
query = data.get("query")
if query is None:
raise ValueError("query is required")
results_data = data.get("results", [])
search_items = []
for result in results_data:
if isinstance(result, SearchItem):
search_items.append(result)
elif isinstance(result, dict):
search_items.append(SearchItem(**result))
else:
raise ValueError(f"Invalid result type: {type(result)}")
return cls(
query=query,
results=search_items
)
def output_type(self):
return "search_output" |