File size: 11,542 Bytes
900b15b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import json
import re
import string
from pathlib import Path
from typing import Any, Dict, List, Optional

from loguru import logger
from tabulate import tabulate


def normalize_str(input_str, remove_punct=True) -> str:
    no_spaces = re.sub(r"\s", "", input_str)
    if remove_punct:
        translator = str.maketrans("", "", string.punctuation)
        return no_spaces.lower().translate(translator)
    else:
        return no_spaces.lower()


def split_string(s: str, char_list: Optional[List[str]] = None) -> list[str]:
    if char_list is None:
        char_list = [",", ";"]
    pattern = f"[{''.join(char_list)}]"
    return re.split(pattern, s)


def normalize_number_str(number_str: str) -> float:
    for char in ["$", "%", ","]:
        number_str = number_str.replace(char, "")
    try:
        return float(number_str)
    except ValueError:
        logger.error(f"String {number_str} cannot be normalized to number str.")
        return float("inf")


def question_scorer(model_answer: str, ground_truth: str) -> bool:
    def is_float(element: Any) -> bool:
        try:
            float(element)
            return True
        except ValueError:
            return False

    try:
        if is_float(ground_truth):
            logger.info(f"Evaluating {model_answer} as a number.")
            normalized_answer = normalize_number_str(model_answer)
            return normalized_answer == float(ground_truth)

        elif any(char in ground_truth for char in [",", ";"]):
            logger.info(f"Evaluating {model_answer} as a comma separated list.")
            gt_elems = split_string(ground_truth)
            ma_elems = split_string(model_answer)

            if len(gt_elems) != len(ma_elems):
                logger.warning("Answer lists have different lengths, returning False.")
                return False

            comparisons = []
            for ma_elem, gt_elem in zip(ma_elems, gt_elems):
                if is_float(gt_elem):
                    normalized_ma_elem = normalize_number_str(ma_elem)
                    comparisons.append(normalized_ma_elem == float(gt_elem))
                else:
                    ma_elem = normalize_str(ma_elem, remove_punct=False)
                    gt_elem = normalize_str(gt_elem, remove_punct=False)
                    comparisons.append(ma_elem == gt_elem)
            return all(comparisons)
        else:
            logger.info(f"Evaluating {model_answer} as a string.")
            ma_elem = normalize_str(model_answer)
            gt_elem = normalize_str(ground_truth)
            return ma_elem == gt_elem
    except Exception as e:
        logger.error(f"Error during evaluation: {e}")
        return False


def load_dataset_meta(path: str, split: str = "validation"):
    data_dir = Path(path) / split

    dataset = []
    with open(data_dir / "metadata.jsonl", "r", encoding="utf-8") as metaf:
        lines = metaf.readlines()
        for line in lines:
            data = json.loads(line)
            if data["task_id"] == "0-0-0-0-0":
                continue
            if data["file_name"]:
                data["file_name"] = data_dir / data["file_name"]
            dataset.append(data)
    return dataset


def load_dataset_meta_dict(path: str, split: str = "validation"):
    data_dir = Path(path) / split

    dataset = {}
    with open(data_dir / "metadata.jsonl", "r", encoding="utf-8") as metaf:
        lines = metaf.readlines()
        for line in lines:
            data = json.loads(line)
            if data["task_id"] == "0-0-0-0-0":
                continue
            if data["file_name"]:
                data["file_name"] = data_dir / data["file_name"]
            dataset[data["task_id"]] = data
    return dataset


def add_file_path(
    task: Dict[str, Any], file_path: str = "./gaia_dataset", split: str = "validation"
):
    if task["file_name"]:
        file_path = Path(f"{file_path}/{split}") / task["file_name"]
        if file_path.suffix in [".pdf", ".docx", ".doc", ".txt"]:
            task["Question"] += f" Here are the necessary document files: {file_path}"

        elif file_path.suffix in [".jpg", ".jpeg", ".png"]:
            task["Question"] += f" Here are the necessary image files: {file_path}"

        elif file_path.suffix in [".xlsx", "xls", ".csv"]:
            task["Question"] += (
                f" Here are the necessary table files: {file_path}, for processing excel file,"
                " you can use the excel tool or write python code to process the file"
                " step-by-step and get the information."
            )
        elif file_path.suffix in [".py"]:
            task["Question"] += f" Here are the necessary python files: {file_path}"

        else:
            task["Question"] += f" Here are the necessary files: {file_path}"

    return task


def report_results(entries):
    # Initialize counters
    total_entries = len(entries)
    total_correct = 0

    # Initialize level statistics
    level_stats = {}

    # Process each entry
    for entry in entries:
        level = entry.get("level")
        is_correct = entry.get("is_correct", False)

        # Initialize level stats if not already present
        if level not in level_stats:
            level_stats[level] = {"total": 0, "correct": 0, "accuracy": 0}

        # Update counters
        level_stats[level]["total"] += 1
        if is_correct:
            total_correct += 1
            level_stats[level]["correct"] += 1

    # Calculate accuracy for each level
    for level, stats in level_stats.items():
        if stats["total"] > 0:
            stats["accuracy"] = (stats["correct"] / stats["total"]) * 100

    # Print overall statistics with colorful logging
    logger.info("Overall Statistics:")
    overall_accuracy = (total_correct / total_entries) * 100

    # Create overall statistics table
    overall_table = [
        ["Total Entries", total_entries],
        ["Total Correct", total_correct],
        ["Overall Accuracy", f"{overall_accuracy:.2f}%"],
    ]
    logger.success(tabulate(overall_table, tablefmt="grid"))
    logger.info("")

    # Create level statistics table
    logger.info("Statistics by Level:")
    level_table = []
    headers = ["Level", "Total Entries", "Correct Answers", "Accuracy"]

    for level in sorted(level_stats.keys()):
        stats = level_stats[level]
        level_table.append(
            [level, stats["total"], stats["correct"], f"{stats['accuracy']:.2f}%"]
        )

    logger.success(tabulate(level_table, headers=headers, tablefmt="grid"))


import uuid
import time

from typing import List

import inspect
from typing import get_type_hints, Tuple


def stream_message_template(model: str, message: str):
    return {
        "id": f"{model}-{str(uuid.uuid4())}",
        "object": "chat.completion.chunk",
        "created": int(time.time()),
        "model": model,
        "choices": [
            {
                "index": 0,
                "delta": {"content": message},
                "logprobs": None,
                "finish_reason": None,
            }
        ],
    }


def get_last_user_message(messages: List[dict]) -> str:
    for message in reversed(messages):
        if message["role"] == "user":
            if isinstance(message["content"], list):
                for item in message["content"]:
                    if item["type"] == "text":
                        return item["text"]
            return message["content"]
    return None


def get_last_assistant_message(messages: List[dict]) -> str:
    for message in reversed(messages):
        if message["role"] == "assistant":
            if isinstance(message["content"], list):
                for item in message["content"]:
                    if item["type"] == "text":
                        return item["text"]
            return message["content"]
    return None


def get_system_message(messages: List[dict]) -> dict:
    for message in messages:
        if message["role"] == "system":
            return message
    return None


def remove_system_message(messages: List[dict]) -> List[dict]:
    return [message for message in messages if message["role"] != "system"]


def pop_system_message(messages: List[dict]) -> Tuple[dict, List[dict]]:
    return get_system_message(messages), remove_system_message(messages)


def add_or_update_system_message(content: str, messages: List[dict]) -> List[dict]:
    """
    Adds a new system message at the beginning of the messages list
    or updates the existing system message at the beginning.

    :param msg: The message to be added or appended.
    :param messages: The list of message dictionaries.
    :return: The updated list of message dictionaries.
    """

    if messages and messages[0].get("role") == "system":
        messages[0]["content"] += f"{content}\n{messages[0]['content']}"
    else:
        # Insert at the beginning
        messages.insert(0, {"role": "system", "content": content})

    return messages


def doc_to_dict(docstring):
    lines = docstring.split("\n")
    description = lines[1].strip()
    param_dict = {}

    for line in lines:
        if ":param" in line:
            line = line.replace(":param", "").strip()
            param, desc = line.split(":", 1)
            param_dict[param.strip()] = desc.strip()
    ret_dict = {"description": description, "params": param_dict}
    return ret_dict


def get_tools_specs(tools) -> List[dict]:
    function_list = [
        {"name": func, "function": getattr(tools, func)}
        for func in dir(tools)
        if callable(getattr(tools, func)) and not func.startswith("__")
    ]

    specs = []

    for function_item in function_list:
        function_name = function_item["name"]
        function = function_item["function"]

        function_doc = doc_to_dict(function.__doc__ or function_name)
        specs.append(
            {
                "name": function_name,
                # TODO: multi-line desc?
                "description": function_doc.get("description", function_name),
                "parameters": {
                    "type": "object",
                    "properties": {
                        param_name: {
                            "type": param_annotation.__name__.lower(),
                            **(
                                {
                                    "enum": (
                                        param_annotation.__args__
                                        if hasattr(param_annotation, "__args__")
                                        else None
                                    )
                                }
                                if hasattr(param_annotation, "__args__")
                                else {}
                            ),
                            "description": function_doc.get("params", {}).get(
                                param_name, param_name
                            ),
                        }
                        for param_name, param_annotation in get_type_hints(
                            function
                        ).items()
                        if param_name != "return"
                    },
                    "required": [
                        name
                        for name, param in inspect.signature(
                            function
                        ).parameters.items()
                        if param.default is param.empty
                    ],
                },
            }
        )

    return specs