Spaces:
Sleeping
Sleeping
File size: 9,295 Bytes
9afc9c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# coding: utf-8
# Copyright (c) 2025 inclusionAI.
import json
import time
import traceback
from typing import Dict, Any, Optional, List, Union
from langchain_core.messages import HumanMessage, BaseMessage, SystemMessage
from examples.android.prompts import SYSTEM_PROMPT, LAST_STEP_PROMPT
from examples.android.utils import (
AgentState,
AgentHistory,
AgentHistoryList,
ActionResult,
PolicyMetadata,
AgentBrain,
Trajectory
)
from examples.browsers.common import AgentStepInfo
from aworld.config.conf import AgentConfig, ConfigDict
from aworld.core.agent.base import AgentResult
from aworld.agents.llm_agent import Agent
from aworld.core.common import Observation, ActionModel, ToolActionInfo
from aworld.logs.util import logger
from examples.tools.tool_action import AndroidAction
class AndroidAgent(Agent):
def __init__(self, conf: Union[Dict[str, Any], ConfigDict, AgentConfig], **kwargs):
super(AndroidAgent, self).__init__(conf, **kwargs)
provider = self.conf.llm_config.llm_provider if self.conf.llm_config.llm_provider else self.conf.llm_provider
if self.conf.llm_config.llm_provider:
self.conf.llm_config.llm_provider = "chat" + provider
else:
self.conf.llm_provider = "chat" + provider
self.available_actions_desc = self._build_action_prompt()
# Settings
self.settings = self.conf
def reset(self, options: Dict[str, Any]):
super(AndroidAgent, self).__init__(options)
# State
self.state = AgentState()
# History
self.history = AgentHistoryList(history=[])
self.trajectory = Trajectory(history=[])
def _build_action_prompt(self) -> str:
def _prompt(info: ToolActionInfo) -> str:
s = f'{info.desc}:\n'
s += '{' + str(info.name) + ': '
if info.input_params:
s += str({k: {"title": k, "type": v} for k, v in info.input_params.items()})
s += '}'
return s
# Iterate over all android actions
val = "\n".join([_prompt(v.value) for k, v in AndroidAction.__members__.items()])
return val
def policy(self,
observation: Observation,
info: Dict[str, Any] = None,
**kwargs) -> Union[List[ActionModel], None]:
self._finished = False
step_info = AgentStepInfo(number=self.state.n_steps, max_steps=self.conf.max_steps)
last_step_msg = None
if step_info and step_info.is_last_step():
# Add last step warning if needed
last_step_msg = HumanMessage(
content=LAST_STEP_PROMPT)
logger.info('Last step finishing up')
logger.info(f'[agent] 📍 Step {self.state.n_steps}')
step_start_time = time.time()
try:
xml_content, base64_img = observation.dom_tree, observation.image
if xml_content is None:
logger.error("[agent] ⚠ Failed to get UI state, stopping task")
self.stop()
return None
self.state.last_result = (xml_content, base64_img if base64_img else "")
logger.info("[agent] 🤖 Analyzing current state with LLM...")
a_step_msg = HumanMessage(content=[
{
"type": "text",
"text": f"""
Task: {self.task}
Current Step: {self.state.n_steps}
Please analyze the current interface and decide the next action. Please directly return the response in JSON format without any other text or code block markers.
"""
},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{self.state.image}"
}
])
messages = [SystemMessage(content=SYSTEM_PROMPT)]
if last_step_msg:
messages.append(last_step_msg)
messages.append(a_step_msg)
logger.info(f"[agent] VLM Input last message: {messages[-1]}")
llm_result = None
try:
llm_result = self._do_policy(messages)
if self.state.stopped or self.state.paused:
logger.info('Android agent paused after getting state')
return [ActionModel(tool_name='android', action_name="stop")]
tool_action = llm_result.actions
step_metadata = PolicyMetadata(
start_time=step_start_time,
end_time=time.time(),
number=self.state.n_steps,
input_tokens=1
)
history_item = AgentHistory(
result=[ActionResult(success=True)],
metadata=step_metadata,
content=xml_content,
base64_img=base64_img
)
self.history.history.append(history_item)
if self.settings.save_history and self.settings.history_path:
self.history.save_to_file(self.settings.history_path)
logger.info(f'📍 Step {self.state.n_steps} starts to execute')
self.state.n_steps += 1
self.state.consecutive_failures = 0
return tool_action
except Exception as e:
logger.warning(traceback.format_exc())
raise RuntimeError("Android agent encountered exception while making the policy.", e)
finally:
if llm_result:
self.trajectory.add_step(observation, info, llm_result)
metadata = PolicyMetadata(
number=self.state.n_steps,
start_time=step_start_time,
end_time=time.time(),
input_tokens=1
)
self._make_history_item(llm_result, observation, metadata)
else:
logger.warning("no result to record!")
except json.JSONDecodeError as e:
logger.error("[agent] ❌ JSON parsing error")
raise
except Exception as e:
logger.error(f"[agent] ❌ Action execution error: {str(e)}")
raise
def _do_policy(self, input_messages: list[BaseMessage]) -> AgentResult:
response = self.llm.invoke(input_messages)
content = response.content
if content.startswith("```json"):
content = content[7:]
if content.startswith("```"):
content = content[3:]
if content.endswith("```"):
content = content[:-3]
content = content.strip()
action_data = json.loads(content)
brain_state = AgentBrain(**action_data["current_state"])
logger.info(f"[agent] ⚠ Eval: {brain_state.evaluation_previous_goal}")
logger.info(f"[agent] 🧠 Memory: {brain_state.memory}")
logger.info(f"[agent] 🎯 Next goal: {brain_state.next_goal}")
actions = action_data.get('action')
result = []
if not actions:
actions = action_data.get("actions")
# print actions
logger.info(f"[agent] VLM Output actions: {actions}")
for action in actions:
action_type = action.get('type')
if not action_type:
logger.warning(f"Action missing type: {action}")
continue
params = {}
if 'type' == action_type:
action_type = 'input_text'
if 'params' in action:
params = action['params']
if 'index' in action:
params['index'] = action['index']
if 'type' in action:
params['type'] = action['type']
if 'text' in action:
params['text'] = action['text']
action_model = ActionModel(
tool_name='android',
action_name=action_type,
params=params
)
result.append(action_model)
return AgentResult(current_state=brain_state, actions=result)
def _make_history_item(self,
model_output: AgentResult | None,
state: Observation,
metadata: Optional[PolicyMetadata] = None) -> None:
if isinstance(state, dict):
state = Observation(**state)
history_item = AgentHistory(
model_output=model_output,
result=state.action_result,
metadata=metadata,
content=state.dom_tree,
base64_img=state.image
)
self.state.history.history.append(history_item)
def pause(self) -> None:
"""Pause the agent"""
logger.info('🔄 Pausing Agent')
self.state.paused = True
def resume(self) -> None:
"""Resume the agent"""
logger.info('▶️ Agent resuming')
self.state.paused = False
def stop(self) -> None:
"""Stop the agent"""
logger.info('⏹️ Agent stopping')
self.state.stopped = True
|