File size: 28,056 Bytes
a27d8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
# coding: utf-8
# Copyright (c) 2025 inclusionAI.

import re
import time
import traceback
import json
from typing import Dict, Any, Optional, List, Union, Tuple
from dataclasses import dataclass, field

from langchain_core.messages import HumanMessage, BaseMessage, AIMessage, ToolMessage
from pydantic import ValidationError

from aworld.core.agent.base import AgentFactory, AgentResult
from aworld.agents.llm_agent import Agent
from examples.browsers.prompts import SystemPrompt
from examples.browsers.utils import convert_input_messages, extract_json_from_model_output, estimate_messages_tokens
from examples.browsers.common import AgentState, AgentStepInfo, AgentHistory, PolicyMetadata, AgentBrain
from aworld.config.conf import AgentConfig, ConfigDict
from aworld.core.common import Observation, ActionModel, ToolActionInfo, ActionResult
from aworld.logs.util import logger
from examples.browsers.prompts import AgentMessagePrompt
from examples.tools.tool_action import BrowserAction


@dataclass
class Trajectory:
    """A class to store agent history records, including all observations, info and AgentResult"""
    history: List[tuple[List[BaseMessage], Observation, Dict[str, Any], AIMessage, AgentResult]] = field(
        default_factory=list)

    def add_step(self, input_messages: List[BaseMessage], observation: Observation, info: Dict[str, Any],
                 output_message: AIMessage, agent_result: AgentResult):
        """Add a step to the history"""
        self.history.append((input_messages, observation, info, output_message, agent_result))

    def get_history(self) -> List[tuple[List[BaseMessage], Observation, Dict[str, Any], AIMessage, AgentResult]]:
        """Get the complete history"""
        return self.history

    def save_history(self, file_path: str):
        his_li = []
        for input_messages, observation, info, output_message, agent_result in self.get_history():
            llm_input = [{"type": input_message.type, "content": input_message.content} for input_message in
                         input_messages]
            llm_output = output_message.content
            his_li.append({"llm_input": llm_input, "llm_output": llm_output})
        with open(file_path, 'w', encoding='utf-8') as f:
            json.dump(his_li, f, ensure_ascii=False, indent=4)


@AgentFactory.register(name='browser_agent', desc="browser agent")
class BrowserAgent(Agent):
    def __init__(self, conf: Union[Dict[str, Any], ConfigDict, AgentConfig], **kwargs):
        super(BrowserAgent, self).__init__(conf, **kwargs)
        self.state = AgentState()
        self.settings = self.conf
        provider = self.conf.llm_config.llm_provider if self.conf.llm_config.llm_provider else self.conf.llm_provider
        if self.conf.llm_config.llm_provider:
            self.conf.llm_config.llm_provider = "chat" + provider
        else:
            self.conf.llm_provider = "chat" + provider

        self.save_file_path = self.conf.save_file_path
        self.available_actions = self._build_action_prompt()
        # Note: Removed _message_manager initialization as it's no longer used
        # Initialize trajectory
        self.trajectory = Trajectory()
        self._init = False

    def reset(self, options: Dict[str, Any]):
        super(BrowserAgent, self).reset(options)

        # Reset trajectory
        self.trajectory = Trajectory()

        # Note: Removed _message_manager initialization as it's no longer used
        # _estimate_tokens_for_messages method now directly uses functions from utils.py

        self._init = True

    def _build_action_prompt(self) -> str:
        def _prompt(info: ToolActionInfo) -> str:
            s = f'{info.desc}: \n'
            s += '{' + str(info.name) + ': '
            if info.input_params:
                s += str({k: {"title": k, "type": v.type} for k, v in info.input_params.items()})
            s += '}'
            return s

        val = "\n".join([_prompt(v.value) for k, v in BrowserAction.__members__.items()])
        return val

    def _log_message_sequence(self, input_messages: List[BaseMessage]) -> None:
        """Log the sequence of messages for debugging purposes"""
        logger.info(f"[agent] 🔍 Invoking LLM with {len(input_messages)} messages")
        logger.info("[agent] 📝 Messages sequence:")
        for i, msg in enumerate(input_messages):
            prefix = msg.type
            logger.info(f"[agent] Message {i + 1}: {prefix} ===================================")
            if isinstance(msg.content, list):
                for item in msg.content:
                    if item.get('type') == 'text':
                        logger.info(f"[agent] Text content: {item.get('text')}")
                    elif item.get('type') == 'image_url':
                        # Only print the first 30 characters of image URL to avoid printing entire base64
                        image_url = item.get('image_url', {}).get('url', '')
                        if image_url.startswith('data:image'):
                            logger.info(f"[agent] Image: [Base64 image data]")
                        else:
                            logger.info(f"[agent] Image URL: {image_url[:30]}...")
            else:
                content = str(msg.content)
                chunk_size = 500
                for j in range(0, len(content), chunk_size):
                    chunk = content[j:j + chunk_size]
                    if j == 0:
                        logger.info(f"[agent] Content: {chunk}")
                    else:
                        logger.info(f"[agent] Content (continued): {chunk}")

            if isinstance(msg, AIMessage) and hasattr(msg, 'tool_calls') and msg.tool_calls:
                for tool_call in msg.tool_calls:
                    logger.info(f"[agent] Tool call: {tool_call.get('name')} - ID: {tool_call.get('id')}")
                    args = str(tool_call.get('args', {}))[:1000]
                    logger.info(f"[agent] Tool args: {args}...")

    def save_process(self, file_path: str):
        self.trajectory.save_history(file_path)

    def policy(self,
               observation: Observation,
               info: Dict[str, Any] = None, **kwargs) -> Union[List[ActionModel], None]:
        start_time = time.time()

        if self._init is False:
            self.reset({"task": observation.content})

        self._finished = False
        # Save current observation to state for message construction
        self.state.last_result = observation.action_result

        if self.conf.max_steps <= self.state.n_steps:
            logger.info('Last step finishing up')

        logger.info(f'[agent] step {self.state.n_steps}')

        # Use the new method to build messages, passing the current observation
        input_messages = self.build_messages_from_trajectory_and_observation(observation=observation)

        # Note: Special message addition has been moved to build_messages_from_trajectory_and_observation

        # Estimate token count
        tokens = self._estimate_tokens_for_messages(input_messages)

        llm_result = None
        output_message = None
        try:
            # Log the message sequence
            self._log_message_sequence(input_messages)

            output_message, llm_result = self._do_policy(input_messages)

            if not llm_result:
                logger.error("[agent] ❌ Failed to parse LLM response")
                return [ActionModel(tool_name=Tools.BROWSER.value, action_name="stop")]

            self.state.n_steps += 1

            # No longer need to remove the last state message
            # self._message_manager._remove_last_state_message()

            if self.state.stopped or self.state.paused:
                logger.info('Browser gent paused after getting state')
                return [ActionModel(tool_name=Tools.BROWSER.value, action_name="stop")]

            tool_action = llm_result.actions

            # Add the current step to the trajectory
            self.trajectory.add_step(input_messages, observation, info, output_message, llm_result)

        except Exception as e:
            logger.warning(traceback.format_exc())
            # No longer need to remove the last state message
            # self._message_manager._remove_last_state_message()
            logger.error(f"[agent] ❌ Error parsing LLM response: {str(e)}")

            # Create an AgentResult object with an empty actions list
            error_result = AgentResult(
                current_state=AgentBrain(
                    evaluation_previous_goal="Failed due to error",
                    memory=f"Error occurred: {str(e)}",
                    thought="Recover from error",
                    next_goal="Recover from error"
                ),
                actions=[]  # Empty actions list
            )

            # Add the error state to the trajectory
            self.trajectory.add_step(input_messages, observation, info, output_message, error_result)

            raise RuntimeError("Browser agent encountered exception while making the policy.", e)
        finally:
            if llm_result:
                # Only keep the history_item creation part
                metadata = PolicyMetadata(
                    number=self.state.n_steps,
                    start_time=start_time,
                    end_time=time.time(),
                    input_tokens=tokens,
                )
                self._make_history_item(llm_result, observation, observation.action_result, metadata)
            else:
                logger.warning("no result to record!")

        return tool_action

    def _do_policy(self, input_messages: list[BaseMessage]) -> Tuple[AIMessage, AgentResult]:
        THINK_TAGS = re.compile(r'<think>.*?</think>', re.DOTALL)

        def _remove_think_tags(text: str) -> str:
            """Remove think tags from text"""
            return re.sub(THINK_TAGS, '', text)

        input_messages = self._convert_input_messages(input_messages)
        output_message = None
        try:

            output_message = self.llm.invoke(input_messages)

            if not output_message or not output_message.content:
                logger.warning("[agent] LLM returned empty response")
                return output_message, AgentResult(
                    current_state=AgentBrain(evaluation_previous_goal="", memory="", thought="", next_goal=""),
                    actions=[ActionModel(agent_name=self.id(), tool_name='browser', action_name="stop")])
        except:
            logger.error(f"[agent] Response content: {output_message}")
            raise RuntimeError('call llm fail, please check llm conf and network.')

        if self.model_name == 'deepseek-reasoner':
            output_message.content = _remove_think_tags(output_message.content)
        try:
            # Get max retries from config
            max_retries = self.settings.get('max_llm_json_retries', 3)
            retry_count = 0
            json_parse_error = None

            while retry_count < max_retries:
                try:
                    parsed_json = extract_json_from_model_output(output_message.content)
                    # If parsing succeeds, break out of the retry loop
                    json_parse_error = None
                    break
                except ValueError as e:
                    # Store the error and retry
                    json_parse_error = e
                    retry_count += 1
                    logger.warning(f"[agent] Failed to parse JSON (attempt {retry_count}/{max_retries}): {str(e)}")

                    if retry_count < max_retries:
                        # Add a reminder message about JSON format with specific structure guidance
                        format_reminder = HumanMessage(
                            content="Your responses must be always JSON with the specified format. Make sure your response includes a 'current_state' object with 'evaluation_previous_goal', 'memory', and 'next_goal' fields, and an 'action' array with the actions to perform. Do not include any explanatory text, only return the raw JSON.")
                        retry_messages = input_messages.copy()
                        retry_messages.append(format_reminder)

                        # Retry with the updated messages
                        logger.info(
                            f"[agent] Retrying LLM invocation ({retry_count}/{max_retries}) with format reminder")
                        output_message = self.llm.invoke(retry_messages)

                        # Check for empty response during retry
                        if not output_message or not output_message.content:
                            logger.warning(
                                f"[agent] LLM returned empty response on retry attempt {retry_count}/{max_retries}")
                            # Continue to next retry instead of immediately returning
                            continue

                        if self.model_name == 'deepseek-reasoner':
                            output_message.content = _remove_think_tags(output_message.content)

            # If all retries failed, raise the last error
            if json_parse_error:
                logger.error(f"[agent] ❌ All {max_retries} attempts to parse JSON failed")
                raise json_parse_error

            logger.info((f"llm response: {parsed_json}"))
            try:
                agent_brain = AgentBrain(**parsed_json['current_state'])
            except:
                agent_brain = None
            actions = parsed_json.get('action')
            result = []
            if not actions:
                actions = parsed_json.get("actions")
            if not actions:
                logger.warning("agent not policy  an action.")
                self._finished = True
                return output_message, AgentResult(current_state=agent_brain,
                                                   actions=[ActionModel(tool_name='browser',
                                                                        agent_name=self.id(),
                                                                        action_name="done")])

            for action in actions:
                if "action_name" in action:
                    action_name = action['action_name']
                    browser_action = BrowserAction.get_value_by_name(action_name)
                    if not browser_action:
                        logger.warning(f"Unsupported action: {action_name}")
                    if action_name == "done":
                        self._finished = True
                    action_model = ActionModel(agent_name=self.id(),
                                               tool_name='browser',
                                               action_name=action_name,
                                               params=action.get('params', {}))
                    result.append(action_model)
                else:
                    for k, v in action.items():
                        browser_action = BrowserAction.get_value_by_name(k)
                        if not browser_action:
                            logger.warning(f"Unsupported action: {k}")

                        action_model = ActionModel(agent_name=self.id(), tool_name='browser', action_name=k, params=v)
                        result.append(action_model)
                        if k == "done":
                            self._finished = True
            return output_message, AgentResult(current_state=agent_brain, actions=result)
        except (ValueError, ValidationError) as e:
            logger.warning(f'Failed to parse model output: {output_message} {str(e)}')
            raise ValueError('Could not parse response.')

    def _convert_input_messages(self, input_messages: list[BaseMessage]) -> list[BaseMessage]:
        """Convert input messages to the correct format"""
        if self.model_name == 'deepseek-reasoner' or self.model_name.startswith('deepseek-r1'):
            return convert_input_messages(input_messages, self.model_name)
        else:
            return input_messages

    def _make_history_item(self,
                           model_output: AgentResult | None,
                           state: Observation,
                           result: list[ActionResult],
                           metadata: Optional[PolicyMetadata] = None) -> None:
        content = ""
        if hasattr(state, 'dom_tree') and state.dom_tree is not None:
            if hasattr(state.dom_tree, 'element_tree'):
                content = state.dom_tree.element_tree.__repr__()
            else:
                content = str(state.dom_tree)

        history_item = AgentHistory(model_output=model_output,
                                    result=state.action_result,
                                    metadata=metadata,
                                    content=content,
                                    base64_img=state.image if hasattr(state, 'image') else None)

        self.state.history.history.append(history_item)

    def _process_action_result(self, action_result, messages, tool_call=None):
        """Helper method to process an action result and add appropriate messages"""
        if action_result.content is not None:
            messages.append(HumanMessage(content='Action result: ' + action_result.content))
        elif action_result.error is not None:
            # Assemble error message when error information exists
            messages.append(HumanMessage(content='Action result: ' + action_result.error))
            if tool_call is not None:
                logger.warning(f"Action {tool_call} failed: {action_result.error}")
            else:
                logger.warning(f"Action failed: {action_result.error}")
            # If there is an error but success is true, log the error and terminate the program as the result is invalid
            if action_result.success is True:
                error_msg = f"Invalid result: success=True but error message exists: {action_result.error}"
                logger.error(error_msg)
                raise ValueError(error_msg)
        return action_result.error is not None

    def build_messages_from_trajectory_and_observation(self, observation: Optional[Observation] = None) -> List[
        BaseMessage]:
        """
        Build complete message history from trajectory and current observation
        
        Args:
            observation: Current observation object, if None current observation won't be added
        """
        messages = []
        # Add system message
        system_message = SystemPrompt(
            max_actions_per_step=self.settings.get('max_actions_per_step')
        ).get_system_message()
        if isinstance(system_message, tuple):
            system_message = system_message[0]
        messages.append(system_message)

        tool_calling_method = self.settings.get("tool_calling_method")
        llm_provider = self.conf.llm_provider if self.conf.llm_provider else self.conf.llm_config.llm_provider

        if tool_calling_method == 'raw' or (tool_calling_method == 'auto' and (
                llm_provider == 'deepseek-reasoner' or llm_provider.startswith('deepseek-r1'))):
            message_context = f'\n\nAvailable actions: {self.available_actions}'
        else:
            message_context = None

        # Add task context (if any)
        if message_context:
            context_message = HumanMessage(content='Context for the task' + message_context)
            messages.append(context_message)

        # Add task message
        task_message = HumanMessage(
            content=f'Your ultimate task is: """{self.task}""". If you achieved your ultimate task, stop everything and use the done action in the next step to complete the task. If not, continue as usual.'
        )
        messages.append(task_message)

        # Add example output
        placeholder_message = HumanMessage(content='Example output:')
        messages.append(placeholder_message)

        # Add example tool call
        tool_calls = [
            {
                'name': 'AgentOutput',
                'args': {
                    'current_state': {
                        'evaluation_previous_goal': 'Success - I opend the first page',
                        'memory': 'Starting with the new task. I have completed 1/10 steps',
                        'thought': 'From the current page I can get information about all the companies.',
                        'next_goal': 'Click on company a',
                    },
                    'action': [{'click_element': {'index': 0}}],
                },
                'id': '1',
                'type': 'tool_call',
            }
        ]
        example_tool_call = AIMessage(
            content='',
            tool_calls=tool_calls,
        )
        messages.append(example_tool_call)

        # Add first tool message with "Browser started" content
        messages.append(ToolMessage(content='Browser started', tool_call_id='1'))

        # Add task history marker
        messages.append(HumanMessage(content='[Your task history memory starts here]'))

        # Add available file paths (if any)
        if self.settings.get('available_file_paths'):
            filepaths_msg = HumanMessage(
                content=f'Here are file paths you can use: {self.settings.get("available_file_paths")}')
            messages.append(filepaths_msg)
        previous_action_entries = []
        # Add messages from the history trajectory
        for input_msgs, obs, info, output_msg, llm_result in self.trajectory.get_history():
            # Check the previous step's actionResult
            has_error = False
            if obs.action_result is not None:
                # The previous action entries should match with action results
                if len(previous_action_entries) == 0:
                    # if previous_action_entries is empty,process action_result directly
                    logger.info(
                        f"History item with action_result count ({len(obs.action_result)}) with empty previous actions - skipping count check")
                elif len(previous_action_entries) == len(obs.action_result):
                    for i, one_action_result in enumerate(obs.action_result):
                        has_error = self._process_action_result(one_action_result, messages,
                                                                previous_action_entries[i]) or has_error
                else:
                    # If sizes don't match, this is a critical error
                    error_msg = f"Action results count ({len(obs.action_result)}) doesn't match action entries count ({len(previous_action_entries)})"
                    logger.error(error_msg)
                    has_error = True
                    # raise ValueError(error_msg)

            # Add agent response
            if llm_result:
                # Create AI message
                output_data = llm_result.model_dump(mode='json', exclude_unset=True)
                action_entries = [{action.action_name: action.params} for action in llm_result.actions]
                output_data["action"] = action_entries
                if "actions" in output_data:
                    del output_data["actions"]

                # Calculate tool_id based on trajectory history. If no actions yet, start with ID 1
                tool_id = 1 if len(self.trajectory.get_history()) == 0 else len(self.trajectory.get_history()) + 1
                tool_calls = [
                    {
                        'name': 'AgentOutput',
                        'args': output_data,
                        'id': str(tool_id),
                        'type': 'tool_call',
                    }
                ]
                previous_action_entries = action_entries
                ai_message = AIMessage(
                    content='',
                    tool_calls=tool_calls,
                )
                messages.append(ai_message)

                # Add empty tool message after each AIMessage
                messages.append(ToolMessage(content='', tool_call_id=str(tool_id)))

        # Add current observation - using the passed observation parameter instead of self.state.current_observation
        if observation:
            # Check if the current observation has an action_result with error
            has_error = False
            if hasattr(observation, 'action_result') and observation.action_result is not None:
                # Match action results with previous actions
                if len(previous_action_entries) == 0:
                    # if previous_action_entries is empty,process action_result directly
                    logger.info(
                        f"Current observation with action_result count ({len(observation.action_result)}) with empty previous actions - skipping count check")
                elif len(previous_action_entries) == len(observation.action_result):
                    for i, one_action_result in enumerate(observation.action_result):
                        has_error = self._process_action_result(one_action_result, messages,
                                                                previous_action_entries[i]) or has_error
                else:
                    # If sizes don't match, this is a critical error
                    error_msg = f"Action results count ({len(observation.action_result)}) doesn't match action entries count ({len(previous_action_entries)})"
                    logger.error(error_msg)
                    has_error = True

            # If there's an error, append observation content outside the loop
            if has_error and observation.content:
                messages.append(HumanMessage(content=observation.content))
            # If no error, process the observation normally
            elif not has_error:
                step_info = AgentStepInfo(number=self.state.n_steps, max_steps=self.conf.max_steps)
                if hasattr(observation, 'dom_tree') and observation.dom_tree:
                    state_message = AgentMessagePrompt(
                        observation,
                        self.state.last_result,
                        include_attributes=self.settings.get('include_attributes'),
                        step_info=step_info,
                    ).get_user_message(self.settings.get('use_vision'))
                    messages.append(state_message)
                elif observation.content:
                    messages.append(HumanMessage(content=observation.content))

        # Add special message for the last step
        # Note: Moved here from policy method to centralize all message building logic
        if self.conf.max_steps <= self.state.n_steps:
            last_step_message = f"""
                Now comes your last step. Use only the "done" action now. No other actions - so here your action sequence must have length 1.
                \nIf the task is not yet fully finished as requested by the user, set success in "done" to false! E.g. if not all steps are fully completed.
                \nIf the task is fully finished, set success in "done" to true.
                \nInclude everything you found out for the ultimate task in the done text.
            """
            messages.append(HumanMessage(content=[{'type': 'text', 'text': last_step_message}]))

        return messages

    def _estimate_tokens_for_messages(self, messages: List[BaseMessage]) -> int:
        """Roughly estimate token count for message list"""
        # Note: Using estimate_messages_tokens function from utils.py instead of calling _message_manager
        # This decouples the dependency on MessageManager
        return estimate_messages_tokens(
            messages,
            image_tokens=self.settings.get('image_tokens', 800),
            estimated_characters_per_token=self.settings.get('estimated_characters_per_token', 3)
        )