File size: 8,527 Bytes
3a235a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import json
import logging
import os
import re
import traceback
from typing import Any, Dict, List

from dotenv import load_dotenv

from aworld.config.conf import AgentConfig, TaskConfig
from aworld.agents.llm_agent import Agent
from aworld.core.task import Task
from aworld.runner import Runners
from examples.gaia.prompt import system_prompt
from examples.gaia.utils import (
    add_file_path,
    load_dataset_meta,
    question_scorer,
    report_results,
)

# Create log directory if it doesn't exist
if not os.path.exists(os.getenv("LOG_FILE_PATH")):
    os.makedirs(os.getenv("LOG_FILE_PATH"))

parser = argparse.ArgumentParser()
parser.add_argument(
    "--start",
    type=int,
    default=0,
    help="Start index of the dataset",
)
parser.add_argument(
    "--end",
    type=int,
    default=20,
    help="End index of the dataset",
)
parser.add_argument(
    "--q",
    type=str,
    help="Question Index, e.g., 0-0-0-0-0. Highest priority: override other arguments if provided.",
)
parser.add_argument(
    "--skip",
    action="store_true",
    help="Skip the question if it has been processed before.",
)
parser.add_argument(
    "--split",
    type=str,
    default="validation",
    help="Split of the dataset, e.g., validation, test",
)
parser.add_argument(
    "--blacklist_file_path",
    type=str,
    nargs="?",
    help="Blacklist file path, e.g., blacklist.txt",
)
args = parser.parse_args()


def setup_logging():
    logging_logger = logging.getLogger()
    logging_logger.setLevel(logging.INFO)

    log_file_name = (
        f"/super_agent_{args.q}.log"
        if args.q
        else f"/super_agent_{args.start}_{args.end}.log"
    )
    file_handler = logging.FileHandler(
        os.getenv(
            "LOG_FILE_PATH",
            "run_super_agent.log",
        )
        + log_file_name,
        mode="a",
        encoding="utf-8",
    )
    file_handler.setLevel(logging.INFO)

    formatter = logging.Formatter(
        "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
    )
    file_handler.setFormatter(formatter)

    logging_logger.addHandler(file_handler)


if __name__ == "__main__":
    load_dotenv()
    setup_logging()

    gaia_dataset_path = os.getenv("GAIA_DATASET_PATH", "./gaia_dataset")
    full_dataset = load_dataset_meta(gaia_dataset_path, split=args.split)
    logging.info(f"Total questions: {len(full_dataset)}")

    agent_config = AgentConfig(
        llm_provider="openai",
        llm_model_name=os.getenv("LLM_MODEL_NAME", "gpt-4o"),
        llm_api_key=os.getenv("LLM_API_KEY", "your_openai_api_key"),
        llm_base_url=os.getenv("LLM_BASE_URL", "your_openai_base_url"),
    )
    super_agent = Agent(
        conf=agent_config,
        name="gaia_super_agent",
        system_prompt=system_prompt,
        mcp_servers=[
            "e2b-server",
            # "filesystem",
            "terminal-controller",
            "excel",
            "calculator",
            "ms-playwright",
            "audio_server",
            "image_server",
            "video_server",
            "search_server",
            "download_server",
            "document_server",
            # "browser_server",
            "youtube_server",
            "reasoning_server",
        ],
    )

    # load results from the checkpoint file
    if os.path.exists(os.getenv("LOG_FILE_PATH") + "/results.json"):
        with open(
            os.getenv("LOG_FILE_PATH") + "/results.json", "r", encoding="utf-8"
        ) as results_f:
            results: List[Dict[str, Any]] = json.load(results_f)
    else:
        results: List[Dict[str, Any]] = []

    # load blacklist `task_id`
    if args.blacklist_file_path and os.path.exists(args.blacklist_file_path):
        with open(args.blacklist_file_path, "r", encoding="utf-8") as f:
            blacklist = set(f.read().splitlines())
    else:
        blacklist = set()  # Empty set if file doesn't exist

    try:
        # slice dataset by args.start and args.end, overrided by args.q (single `task_id`)
        dataset_slice = (
            [
                dataset_record
                for idx, dataset_record in enumerate(full_dataset)
                if dataset_record["task_id"] in args.q
            ]
            if args.q is not None
            else full_dataset[args.start : args.end]
        )

        # main loop to execute questions
        for i, dataset_i in enumerate(dataset_slice):
            # specify `task_id`
            if args.q and args.q != dataset_i["task_id"]:
                continue
            # only valid for args.q==None
            if not args.q:
                # blacklist
                if dataset_i["task_id"] in blacklist:
                    continue

                # pass
                if any(
                    # Question Done and Correct
                    (result["task_id"] == dataset_i["task_id"] and result["is_correct"])
                    for result in results
                ) or any(
                    # Question Done and Incorrect, but Level is 3
                    (
                        result["task_id"] == dataset_i["task_id"]
                        and not result["is_correct"]
                        and dataset_i["Level"] == 3
                    )
                    for result in results
                ):
                    continue

                # skip
                if args.skip and any(
                    # Question Done and Correct
                    (result["task_id"] == dataset_i["task_id"])
                    for result in results
                ):
                    continue

            # run
            try:
                logging.info(f"Start to process: {dataset_i['task_id']}")
                logging.info(f"Detail: {dataset_i}")
                logging.info(f"Question: {dataset_i['Question']}")
                logging.info(f"Level: {dataset_i['Level']}")
                logging.info(f"Tools: {dataset_i['Annotator Metadata']['Tools']}")

                question = add_file_path(
                    dataset_i, file_path=gaia_dataset_path, split=args.split
                )["Question"]

                task = Task(input=question, agent=super_agent, conf=TaskConfig())
                result = Runners.sync_run_task(task=task)

                match = re.search(r"<answer>(.*?)</answer>", result[task.id].get('answer'))
                if match:
                    answer = match.group(1)
                    logging.info(f"Agent answer: {answer}")
                    logging.info(f"Correct answer: {dataset_i['Final answer']}")

                    if question_scorer(answer, dataset_i["Final answer"]):
                        logging.info(f"Question {i} Correct!")
                    else:
                        logging.info("Incorrect!")

                # Create the new result record
                new_result = {
                    "task_id": dataset_i["task_id"],
                    "level": dataset_i["Level"],
                    "question": question,
                    "answer": dataset_i["Final answer"],
                    "response": answer,
                    "is_correct": question_scorer(answer, dataset_i["Final answer"]),
                }

                # Check if this task_id already exists in results
                existing_index = next(
                    (
                        i
                        for i, result in enumerate(results)
                        if result["task_id"] == dataset_i["task_id"]
                    ),
                    None,
                )

                if existing_index is not None:
                    # Update existing record
                    results[existing_index] = new_result
                    logging.info(
                        f"Updated existing record for task_id: {dataset_i['task_id']}"
                    )
                else:
                    # Append new record
                    results.append(new_result)
                    logging.info(
                        f"Added new record for task_id: {dataset_i['task_id']}"
                    )

            except Exception as e:
                logging.error(f"Error processing {i}: {traceback.format_exc()}")
                continue
    except KeyboardInterrupt:
        pass
    finally:
        # report
        report_results(results)
        with open(
            os.getenv("LOG_FILE_PATH") + "/results.json", "w", encoding="utf-8"
        ) as f:
            json.dump(results, f, indent=4, ensure_ascii=False)