Spaces:
Sleeping
Sleeping
File size: 34,968 Bytes
3e11f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 |
"""
Document MCP Server
This module provides MCP server functionality for document processing and analysis.
It handles various document formats including:
- Text files
- PDF documents
- Word documents (DOCX)
- Excel spreadsheets
- PowerPoint presentations
- JSON and XML files
- Source code files
Each document type has specialized processing functions that extract content,
structure, and metadata. The server focuses on local file processing with
appropriate validation and error handling.
Main functions:
- mcpreadtext: Reads plain text files
- mcpreadpdf: Reads PDF files with optional image extraction
- mcpreaddocx: Reads Word documents
- mcpreadexcel: Reads Excel spreadsheets
- mcpreadpptx: Reads PowerPoint presentations
- mcpreadjson: Reads and parses JSON/JSONL files
- mcpreadxml: Reads and parses XML files
- mcpreadsourcecode: Reads and analyzes source code files
"""
import io
import json
import os
import sys
import tempfile
import traceback
from datetime import date, datetime
from typing import Any, Dict, List, Optional
import fitz
import html2text
import pandas as pd
import xmltodict
from bs4 import BeautifulSoup
from docx2markdown._docx_to_markdown import docx_to_markdown
from dotenv import load_dotenv
from mcp.server.fastmcp import FastMCP
from PIL import Image, ImageDraw, ImageFont
from pptx import Presentation
from pydantic import BaseModel, Field
from PyPDF2 import PdfReader
from tabulate import tabulate
from xls2xlsx import XLS2XLSX
from aworld.logs.util import logger
from aworld.utils import import_package
from mcp_servers.image_server import encode_images
mcp = FastMCP("document-server")
# Define model classes for different document types
class TextDocument(BaseModel):
"""Model representing a text document"""
content: str
file_path: str
file_name: str
file_size: int
last_modified: str
class HtmlDocument(BaseModel):
"""Model representing an HTML document"""
content: str # Extracted text content
html_content: str # Original HTML content
file_path: str
file_name: str
file_size: int
last_modified: str
title: Optional[str] = None
links: Optional[List[Dict[str, str]]] = None
images: Optional[List[Dict[str, str]]] = None
tables: Optional[List[str]] = None
markdown: Optional[str] = None # HTML converted to Markdown format
class JsonDocument(BaseModel):
"""Model representing a JSON document"""
format: str # "json" or "jsonl"
type: Optional[str] = None # "array" or "object" for standard JSON
count: Optional[int] = None
keys: Optional[List[str]] = None
data: Any
file_path: str
file_name: str
class XmlDocument(BaseModel):
"""Model representing an XML document"""
content: Dict
file_path: str
file_name: str
class PdfImage(BaseModel):
"""Model representing an image extracted from a PDF"""
page: int
format: str
width: int
height: int
path: str
class PdfDocument(BaseModel):
"""Model representing a PDF document"""
content: str
file_path: str
file_name: str
page_count: int
images: Optional[List[PdfImage]] = None
image_count: Optional[int] = None
image_dir: Optional[str] = None
error: Optional[str] = None
class PdfResult(BaseModel):
"""Model representing results from processing multiple PDF documents"""
total_files: int
success_count: int
failed_count: int
results: List[PdfDocument]
class DocxDocument(BaseModel):
"""Model representing a Word document"""
content: str
file_path: str
file_name: str
class ExcelSheet(BaseModel):
"""Model representing a sheet in an Excel file"""
name: str
data: List[Dict[str, Any]]
markdown_table: str
row_count: int
column_count: int
class ExcelDocument(BaseModel):
"""Model representing an Excel document"""
file_name: str
file_path: str
processed_path: Optional[str] = None
file_type: str
sheet_count: int
sheet_names: List[str]
sheets: List[ExcelSheet]
success: bool = True
error: Optional[str] = None
class ExcelResult(BaseModel):
"""Model representing results from processing multiple Excel documents"""
total_files: int
success_count: int
failed_count: int
results: List[ExcelDocument]
class PowerPointSlide(BaseModel):
"""Model representing a slide in a PowerPoint presentation"""
slide_number: int
image: str # Base64 encoded image
class PowerPointDocument(BaseModel):
"""Model representing a PowerPoint document"""
file_path: str
file_name: str
slide_count: int
slides: List[PowerPointSlide]
class SourceCodeDocument(BaseModel):
"""Model representing a source code document"""
content: str
file_type: str
file_path: str
file_name: str
line_count: int
size_bytes: int
last_modified: str
classes: Optional[List[str]] = None
functions: Optional[List[str]] = None
imports: Optional[List[str]] = None
package: Optional[List[str]] = None
methods: Optional[List[str]] = None
includes: Optional[List[str]] = None
class DocumentError(BaseModel):
"""Model representing an error in document processing"""
error: str
file_path: Optional[str] = None
file_name: Optional[str] = None
class ComplexEncoder(json.JSONEncoder):
def default(self, o):
if isinstance(o, datetime):
return o.strftime("%Y-%m-%d %H:%M:%S")
elif isinstance(o, date):
return o.strftime("%Y-%m-%d")
else:
return json.JSONEncoder.default(self, o)
def handle_error(e: Exception, error_type: str, file_path: Optional[str] = None) -> str:
"""Unified error handling and return standard format error message"""
error_msg = f"{error_type} error: {str(e)}"
logger.error(traceback.format_exc())
error = DocumentError(
error=error_msg,
file_path=file_path,
file_name=os.path.basename(file_path) if file_path else None,
)
return error.model_dump_json()
def check_file_readable(document_path: str) -> str:
"""Check if file exists and is readable, return error message or None"""
if not os.path.exists(document_path):
return f"File does not exist: {document_path}"
if not os.access(document_path, os.R_OK):
return f"File is not readable: {document_path}"
return None
@mcp.tool(
description="Read and return content from local text file. Cannot process https://URLs files."
)
def mcpreadtext(
document_path: str = Field(description="The input local text file path."),
) -> str:
"""Read and return content from local text file. Cannot process https://URLs files."""
error = check_file_readable(document_path)
if error:
return DocumentError(error=error, file_path=document_path).model_dump_json()
try:
with open(document_path, "r", encoding="utf-8") as f:
content = f.read()
result = TextDocument(
content=content,
file_path=document_path,
file_name=os.path.basename(document_path),
file_size=os.path.getsize(document_path),
last_modified=datetime.fromtimestamp(
os.path.getmtime(document_path)
).strftime("%Y-%m-%d %H:%M:%S"),
)
return result.model_dump_json()
except Exception as e:
return handle_error(e, "Text file reading", document_path)
@mcp.tool(
description="Read and parse JSON or JSONL file, return the parsed content. Cannot process https://URLs files."
)
def mcpreadjson(
document_path: str = Field(description="Local path to JSON or JSONL file"),
is_jsonl: bool = Field(
default=False,
description="Whether the file is in JSONL format (one JSON object per line)",
),
) -> str:
"""Read and parse JSON or JSONL file, return the parsed content. Cannot process https://URLs files."""
error = check_file_readable(document_path)
if error:
return DocumentError(error=error, file_path=document_path).model_dump_json()
try:
# Choose processing method based on file type
if is_jsonl:
# Process JSONL file (one JSON object per line)
results = []
with open(document_path, "r", encoding="utf-8") as f:
for line_num, line in enumerate(f, 1):
line = line.strip()
if not line:
continue
try:
json_obj = json.loads(line)
results.append(json_obj)
except json.JSONDecodeError as e:
logger.warning(
f"JSON parsing error at line {line_num}: {str(e)}"
)
# Create result model
result = JsonDocument(
format="jsonl",
count=len(results),
data=results,
file_path=document_path,
file_name=os.path.basename(document_path),
)
else:
# Process standard JSON file
with open(document_path, "r", encoding="utf-8") as f:
data = json.load(f)
# Create result model based on data type
if isinstance(data, list):
result = JsonDocument(
format="json",
type="array",
count=len(data),
data=data,
file_path=document_path,
file_name=os.path.basename(document_path),
)
else:
result = JsonDocument(
format="json",
type="object",
keys=list(data.keys()) if isinstance(data, dict) else [],
data=data,
file_path=document_path,
file_name=os.path.basename(document_path),
)
return result.model_dump_json()
except json.JSONDecodeError as e:
return handle_error(e, "JSON parsing", document_path)
except Exception as e:
return handle_error(e, "JSON file reading", document_path)
@mcp.tool(
description="Read and return content from XML file. return the parsed content. Cannot process https://URLs files."
)
def mcpreadxml(
document_path: str = Field(description="The local input XML file path."),
) -> str:
"""Read and return content from XML file. Cannot process https://URLs files."""
error = check_file_readable(document_path)
if error:
return DocumentError(error=error, file_path=document_path).model_dump_json()
try:
with open(document_path, "r", encoding="utf-8") as f:
data = f.read()
result = XmlDocument(
content=xmltodict.parse(data),
file_path=document_path,
file_name=os.path.basename(document_path),
)
return result.model_dump_json()
except Exception as e:
return handle_error(e, "XML file reading", document_path)
@mcp.tool(
description="Read and return content from PDF file with optional image extraction. return the parsed content. Cannot process https://URLs files."
)
def mcpreadpdf(
document_paths: List[str] = Field(description="The local input PDF file paths."),
extract_images: bool = Field(
default=False, description="Whether to extract images from PDF (default: False)"
),
) -> str:
"""Read and return content from PDF file with optional image extraction. Cannot process https://URLs files."""
try:
results = []
success_count = 0
failed_count = 0
for document_path in document_paths:
error = check_file_readable(document_path)
if error:
results.append(
PdfDocument(
content="",
file_path=document_path,
file_name=os.path.basename(document_path),
page_count=0,
error=error,
)
)
failed_count += 1
continue
try:
with open(document_path, "rb") as f:
reader = PdfReader(f)
content = " ".join(page.extract_text() for page in reader.pages)
page_count = len(reader.pages)
pdf_result = PdfDocument(
content=content,
file_path=document_path,
file_name=os.path.basename(document_path),
page_count=page_count,
)
# Extract images if requested
if extract_images:
images_data = []
# Use /tmp directory for storing images
output_dir = "/tmp/pdf_images"
# Create output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Generate a unique subfolder based on filename to avoid conflicts
pdf_name = os.path.splitext(os.path.basename(document_path))[0]
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
image_dir = os.path.join(output_dir, f"{pdf_name}_{timestamp}")
os.makedirs(image_dir, exist_ok=True)
try:
# Open PDF with PyMuPDF
pdf_document = fitz.open(document_path)
# Iterate through each page
for page_index in range(len(pdf_document)):
page = pdf_document[page_index]
# Get image list
image_list = page.get_images(full=True)
# Process each image
for img_index, img in enumerate(image_list):
# Extract image information
xref = img[0]
base_image = pdf_document.extract_image(xref)
image_bytes = base_image["image"]
image_ext = base_image["ext"]
# Save image to file in /tmp directory
img_filename = f"pdf_image_p{page_index+1}_{img_index+1}.{image_ext}"
img_path = os.path.join(image_dir, img_filename)
with open(img_path, "wb") as img_file:
img_file.write(image_bytes)
logger.success(f"Image saved: {img_path}")
# Get image dimensions
with Image.open(img_path) as img:
width, height = img.size
# Add to results with file path instead of base64
images_data.append(
PdfImage(
page=page_index + 1,
format=image_ext,
width=width,
height=height,
path=img_path,
)
)
pdf_result.images = images_data
pdf_result.image_count = len(images_data)
pdf_result.image_dir = image_dir
except Exception as img_error:
logger.error(f"Error extracting images: {str(img_error)}")
# Don't clean up on error so we can keep any successfully extracted images
pdf_result.error = str(img_error)
results.append(pdf_result)
success_count += 1
except Exception as e:
results.append(
PdfDocument(
content="",
file_path=document_path,
file_name=os.path.basename(document_path),
page_count=0,
error=str(e),
)
)
failed_count += 1
# Create final result
pdf_result = PdfResult(
total_files=len(document_paths),
success_count=success_count,
failed_count=failed_count,
results=results,
)
return pdf_result.model_dump_json()
except Exception as e:
return handle_error(e, "PDF file reading")
@mcp.tool(
description="Read and return content from Word file. return the parsed content. Cannot process https://URLs files."
)
def mcpreaddocx(
document_path: str = Field(description="The local input Word file path."),
) -> str:
"""Read and return content from Word file. Cannot process https://URLs files."""
error = check_file_readable(document_path)
if error:
return DocumentError(error=error, file_path=document_path).model_dump_json()
try:
file_name = os.path.basename(document_path)
md_file_path = f"{file_name}.md"
docx_to_markdown(document_path, md_file_path)
with open(md_file_path, "r", encoding="utf-8") as f:
content = f.read()
os.remove(md_file_path)
result = DocxDocument(
content=content, file_path=document_path, file_name=file_name
)
return result.model_dump_json()
except Exception as e:
return handle_error(e, "Word file reading", document_path)
@mcp.tool(
description="Read multiple Excel/CSV files and convert sheets to Markdown tables. return the parsed content. Cannot process https://URLs files."
)
def mcpreadexcel(
document_paths: List[str] = Field(
description="List of local input Excel/CSV file paths."
),
max_rows: int = Field(
1000, description="Maximum number of rows to read per sheet (default: 1000)"
),
convert_xls_to_xlsx: bool = Field(
False,
description="Whether to convert XLS files to XLSX format (default: False)",
),
) -> str:
"""Read multiple Excel/CSV files and convert sheets to Markdown tables. Cannot process https://URLs files."""
try:
# Import required packages
import_package("tabulate")
# Import xls2xlsx package if conversion is requested
if convert_xls_to_xlsx:
import_package("xls2xlsx")
all_results = []
temp_files = [] # Track temporary files for cleanup
success_count = 0
failed_count = 0
# Process each file
for document_path in document_paths:
# Check if file exists and is readable
error = check_file_readable(document_path)
if error:
all_results.append(
ExcelDocument(
file_name=os.path.basename(document_path),
file_path=document_path,
file_type="UNKNOWN",
sheet_count=0,
sheet_names=[],
sheets=[],
success=False,
error=error,
)
)
failed_count += 1
continue
try:
# Check file extension
file_ext = os.path.splitext(document_path)[1].lower()
# Validate file type
if file_ext not in [".csv", ".xls", ".xlsx", ".xlsm"]:
error_msg = f"Unsupported file format: {file_ext}. Only CSV, XLS, XLSX, and XLSM formats are supported."
all_results.append(
ExcelDocument(
file_name=os.path.basename(document_path),
file_path=document_path,
file_type=file_ext.replace(".", "").upper(),
sheet_count=0,
sheet_names=[],
sheets=[],
success=False,
error=error_msg,
)
)
failed_count += 1
continue
# Convert XLS to XLSX if requested and file is XLS
processed_path = document_path
if convert_xls_to_xlsx and file_ext == ".xls":
try:
logger.info(f"Converting XLS to XLSX: {document_path}")
converter = XLS2XLSX(document_path)
# Create temp file with xlsx extension
xlsx_path = (
os.path.splitext(document_path)[0] + "_converted.xlsx"
)
converter.to_xlsx(xlsx_path)
processed_path = xlsx_path
temp_files.append(xlsx_path) # Track for cleanup
logger.success(f"Converted XLS to XLSX: {xlsx_path}")
except Exception as conv_error:
logger.error(f"XLS to XLSX conversion error: {str(conv_error)}")
# Continue with original file if conversion fails
excel_sheets = []
sheet_names = []
# Handle CSV files differently
if file_ext == ".csv":
# For CSV files, create a single sheet with the file name
sheet_name = os.path.basename(document_path).replace(".csv", "")
df = pd.read_csv(processed_path, nrows=max_rows)
# Create markdown table
markdown_table = "*Empty table*"
if not df.empty:
headers = df.columns.tolist()
table_data = df.values.tolist()
markdown_table = tabulate(
table_data, headers=headers, tablefmt="pipe"
)
if len(df) >= max_rows:
markdown_table += (
f"\n\n*Note: Table truncated to {max_rows} rows*"
)
# Create sheet model
excel_sheets.append(
ExcelSheet(
name=sheet_name,
data=df.to_dict(orient="records"),
markdown_table=markdown_table,
row_count=len(df),
column_count=len(df.columns),
)
)
sheet_names = [sheet_name]
else:
# For Excel files, process all sheets
with pd.ExcelFile(processed_path) as xls:
sheet_names = xls.sheet_names
for sheet_name in sheet_names:
# Read Excel sheet into DataFrame with row limit
df = pd.read_excel(
xls, sheet_name=sheet_name, nrows=max_rows
)
# Create markdown table
markdown_table = "*Empty table*"
if not df.empty:
headers = df.columns.tolist()
table_data = df.values.tolist()
markdown_table = tabulate(
table_data, headers=headers, tablefmt="pipe"
)
if len(df) >= max_rows:
markdown_table += f"\n\n*Note: Table truncated to {max_rows} rows*"
# Create sheet model
excel_sheets.append(
ExcelSheet(
name=sheet_name,
data=df.to_dict(orient="records"),
markdown_table=markdown_table,
row_count=len(df),
column_count=len(df.columns),
)
)
# Create result for this file
file_result = ExcelDocument(
file_name=os.path.basename(document_path),
file_path=document_path,
processed_path=(
processed_path if processed_path != document_path else None
),
file_type=file_ext.replace(".", "").upper(),
sheet_count=len(sheet_names),
sheet_names=sheet_names,
sheets=excel_sheets,
success=True,
)
all_results.append(file_result)
success_count += 1
except Exception as file_error:
# Handle errors for individual files
error_msg = str(file_error)
logger.error(f"File reading error for {document_path}: {error_msg}")
all_results.append(
ExcelDocument(
file_name=os.path.basename(document_path),
file_path=document_path,
file_type=os.path.splitext(document_path)[1]
.replace(".", "")
.upper(),
sheet_count=0,
sheet_names=[],
sheets=[],
success=False,
error=error_msg,
)
)
failed_count += 1
# Clean up temporary files
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.remove(temp_file)
logger.info(f"Removed temporary file: {temp_file}")
except Exception as cleanup_error:
logger.warning(
f"Error cleaning up temporary file {temp_file}: {str(cleanup_error)}"
)
# Create final result
excel_result = ExcelResult(
total_files=len(document_paths),
success_count=success_count,
failed_count=failed_count,
results=all_results,
)
return excel_result.model_dump_json()
except Exception as e:
return handle_error(e, "Excel/CSV files processing")
@mcp.tool(
description="Read and convert PowerPoint slides to base64 encoded images. return the parsed content. Cannot process https://URLs files."
)
def mcpreadpptx(
document_path: str = Field(description="The local input PowerPoint file path."),
) -> str:
"""Read and convert PowerPoint slides to base64 encoded images. Cannot process https://URLs files."""
error = check_file_readable(document_path)
if error:
return DocumentError(error=error, file_path=document_path).model_dump_json()
# Create temporary directory
temp_dir = tempfile.mkdtemp()
slides_data = []
try:
presentation = Presentation(document_path)
total_slides = len(presentation.slides)
if total_slides == 0:
raise ValueError("PPT file does not contain any slides")
# Process each slide
for i, slide in enumerate(presentation.slides):
# Set slide dimensions
slide_width_px = 1920 # 16:9 ratio
slide_height_px = 1080
# Create blank image
slide_img = Image.new("RGB", (slide_width_px, slide_height_px), "white")
draw = ImageDraw.Draw(slide_img)
font = ImageFont.load_default()
# Draw slide number
draw.text((20, 20), f"Slide {i+1}/{total_slides}", fill="black", font=font)
# Process shapes in the slide
for shape in slide.shapes:
try:
# Process images
if hasattr(shape, "image") and shape.image:
image_stream = io.BytesIO(shape.image.blob)
img = Image.open(image_stream)
left = int(
shape.left * slide_width_px / presentation.slide_width
)
top = int(
shape.top * slide_height_px / presentation.slide_height
)
slide_img.paste(img, (left, top))
# Process text
elif hasattr(shape, "text") and shape.text:
text_left = int(
shape.left * slide_width_px / presentation.slide_width
)
text_top = int(
shape.top * slide_height_px / presentation.slide_height
)
draw.text(
(text_left, text_top),
shape.text,
fill="black",
font=font,
)
except Exception as shape_error:
logger.warning(
f"Error processing shape in slide {i+1}: {str(shape_error)}"
)
# Save slide image
img_path = os.path.join(temp_dir, f"slide_{i+1}.jpg")
slide_img.save(img_path, "JPEG")
# Convert to base64
base64_image = encode_images(img_path)
slides_data.append(
PowerPointSlide(
slide_number=i + 1, image=f"data:image/jpeg;base64,{base64_image}"
)
)
# Create result
result = PowerPointDocument(
file_path=document_path,
file_name=os.path.basename(document_path),
slide_count=total_slides,
slides=slides_data,
)
return result.model_dump_json()
except Exception as e:
return handle_error(e, "PowerPoint processing", document_path)
finally:
# Clean up temporary files
try:
for file in os.listdir(temp_dir):
os.remove(os.path.join(temp_dir, file))
os.rmdir(temp_dir)
except Exception as cleanup_error:
logger.warning(f"Error cleaning up temporary files: {str(cleanup_error)}")
@mcp.tool(
description="Read HTML file and extract text content, optionally extract links, images, and table information, and convert to Markdown format."
)
def mcpreadhtmltext(
document_path: str = Field(description="Local HTML file path or Web URL."),
extract_links: bool = Field(
default=True, description="Whether to extract link information"
),
extract_images: bool = Field(
default=True, description="Whether to extract image information"
),
extract_tables: bool = Field(
default=True, description="Whether to extract table information"
),
convert_to_markdown: bool = Field(
default=True, description="Whether to convert HTML to Markdown format"
),
) -> str:
"""Read HTML file and extract text content, optionally extract links, images, and table information, and convert to Markdown format."""
error = check_file_readable(document_path)
if error:
return DocumentError(error=error, file_path=document_path).model_dump_json()
try:
# Read HTML file
with open(document_path, "r", encoding="utf-8") as f:
html_content = f.read()
# Parse HTML using BeautifulSoup
soup = BeautifulSoup(html_content, "html.parser")
# Extract text content (remove script and style content)
for script in soup(["script", "style"]):
script.extract()
text_content = soup.get_text(separator="\n", strip=True)
# Extract title
title = soup.title.string if soup.title else None
# Initialize result object
result = HtmlDocument(
content=text_content,
html_content=html_content,
file_path=document_path,
file_name=os.path.basename(document_path),
file_size=os.path.getsize(document_path),
last_modified=datetime.fromtimestamp(
os.path.getmtime(document_path)
).strftime("%Y-%m-%d %H:%M:%S"),
title=title,
)
# Extract links
if extract_links:
links = []
for link in soup.find_all("a"):
href = link.get("href")
text = link.get_text(strip=True)
if href:
links.append({"url": href, "text": text})
result.links = links
# Extract images
if extract_images:
images = []
for img in soup.find_all("img"):
src = img.get("src")
alt = img.get("alt", "")
if src:
images.append({"src": src, "alt": alt})
result.images = images
# Extract tables
if extract_tables:
tables = []
for table in soup.find_all("table"):
tables.append(str(table))
result.tables = tables
# Convert to Markdown
if convert_to_markdown:
h = html2text.HTML2Text()
h.ignore_links = False
h.ignore_images = False
h.ignore_tables = False
markdown_content = h.handle(html_content)
result.markdown = markdown_content
return result.model_dump_json()
except Exception as e:
return handle_error(e, "HTML file reading", document_path)
def main():
load_dotenv()
print("Starting Document MCP Server...", file=sys.stderr)
mcp.run(transport="stdio")
# Make the module callable
def __call__():
"""
Make the module callable for uvx.
This function is called when the module is executed directly.
"""
main()
sys.modules[__name__].__call__ = __call__
# Run the server when the script is executed directly
if __name__ == "__main__":
main()
|