Spaces:
Sleeping
Sleeping
File size: 16,533 Bytes
3e11f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
# pylint: disable=E1101
import base64
import os
import sys
import traceback
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import cv2
import numpy as np
from dotenv import load_dotenv
from mcp.server.fastmcp import FastMCP
from openai import OpenAI
from pydantic import Field
from aworld.logs.util import logger
from mcp_servers.utils import get_file_from_source
client = OpenAI(api_key=os.getenv("VIDEO_LLM_API_KEY"), base_url=os.getenv("VIDEO_LLM_BASE_URL"))
# Initialize MCP server
mcp = FastMCP("Video Server")
@dataclass
class KeyframeResult:
"""Result of keyframe extraction from a video.
Attributes:
frame_paths: List of file paths to the saved keyframes
frame_timestamps: List of timestamps (in seconds) corresponding to each frame
output_directory: Directory where frames were saved
frame_count: Number of frames extracted
success: Whether the extraction was successful
error_message: Error message if extraction failed, None otherwise
"""
frame_paths: List[str]
frame_timestamps: List[float]
output_directory: str
frame_count: int
success: bool
error_message: Optional[str] = None
VIDEO_ANALYZE = (
"Input is a sequence of video frames. Given user's task: {task}. "
"analyze the video content following these steps:\n"
"1. Temporal sequence understanding\n"
"2. Motion and action analysis\n"
"3. Scene context interpretation\n"
"4. Object and person tracking\n"
"Return a json string with the following format: "
'{{"video_analysis_result": "analysis result given task and video frames"}}'
)
VIDEO_EXTRACT_SUBTITLES = (
"Input is a sequence of video frames. "
"Extract all subtitles (if present) in the video. "
"Return a json string with the following format: "
'{"video_subtitles": "extracted subtitles from video"}'
)
VIDEO_SUMMARIZE = (
"Input is a sequence of video frames. "
"Summarize the main content of the video. "
"Include key points, main topics, and important visual elements. "
"Return a json string with the following format: "
'{"video_summary": "concise summary of the video content"}'
)
def get_video_frames(
video_source: str,
sample_rate: int = 2,
start_time: float = 0,
end_time: float = None,
) -> List[Dict[str, Any]]:
"""
Get frames from video with given sample rate using robust file handling
Args:
video_source: Path or URL to the video file
sample_rate: Number of frames to sample per second
start_time: Start time of the video segment in seconds (default: 0)
end_time: End time of the video segment in seconds (default: None, meaning the end of the video)
Returns:
List[Dict[str, Any]]: List of dictionaries containing frame data and timestamp
Raises:
ValueError: When video file cannot be opened or is not a valid video
"""
try:
# Get file with validation (only video files allowed)
file_path, _, _ = get_file_from_source(
video_source,
allowed_mime_prefixes=["video/"],
max_size_mb=2500.0, # 2500MB limit for videos
type="video", # Specify type as video to handle video files
)
# Open video file
video = cv2.VideoCapture(file_path)
if not video.isOpened():
raise ValueError(f"Could not open video file: {file_path}")
fps = video.get(cv2.CAP_PROP_FPS)
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
video_duration = frame_count / fps # 30s
if end_time is None:
end_time = video_duration
if start_time > end_time:
raise ValueError("Start time cannot be greater than end time.")
if start_time < 0:
start_time = 0
if end_time > video_duration:
end_time = video_duration
start_frame = int(start_time * fps)
end_frame = int(end_time * fps)
all_frames = []
frames = []
# Calculate frame interval based on sample rate
frame_interval = max(1, int(fps / sample_rate))
# Set the video capture to the start frame
video.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
for i in range(start_frame, end_frame):
ret, frame = video.read()
if not ret:
break
# Convert frame to JPEG format
_, buffer = cv2.imencode(".jpg", frame)
frame_data = base64.b64encode(buffer).decode("utf-8")
# Add data URL prefix for JPEG image
frame_data = f"data:image/jpeg;base64,{frame_data}"
all_frames.append({"data": frame_data, "time": i / fps})
for i in range(0, len(all_frames), frame_interval):
frames.append(all_frames[i])
video.release()
# Clean up temporary file if it was created for a URL
if file_path != os.path.abspath(video_source) and os.path.exists(file_path):
os.unlink(file_path)
if not frames:
raise ValueError(f"Could not extract any frames from video: {video_source}")
return frames
except Exception as e:
logger.error(f"Error extracting frames from {video_source}: {str(e)}")
raise
def create_video_content(prompt: str, video_frames: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Create uniform video format for querying llm."""
content = [{"type": "text", "text": prompt}]
content.extend([{"type": "image_url", "image_url": {"url": frame["data"]}} for frame in video_frames])
return content
@mcp.tool(description="Analyze the video content by the given question.")
def mcp_analyze_video(
video_url: str = Field(description="The input video in given filepath or url."),
question: str = Field(description="The question to analyze."),
sample_rate: int = Field(default=2, description="Sample n frames per second."),
start_time: float = Field(default=0, description="Start time of the video segment in seconds."),
end_time: float = Field(default=None, description="End time of the video segment in seconds."),
) -> str:
"""analyze the video content by the given question."""
try:
video_frames = get_video_frames(video_url, sample_rate, start_time, end_time)
logger.info(f"---len video_frames:{len(video_frames)}")
interval = 20
frame_nums = 30
all_res = []
for i in range(0, len(video_frames), interval):
inputs = []
cur_frames = video_frames[i : i + frame_nums]
content = create_video_content(VIDEO_ANALYZE.format(task=question), cur_frames)
inputs.append({"role": "user", "content": content})
try:
response = client.chat.completions.create(
model=os.getenv("VIDEO_LLM_MODEL_NAME"),
messages=inputs,
temperature=0,
)
cur_video_analysis_result = response.choices[0].message.content
except Exception:
cur_video_analysis_result = ""
all_res.append(f"result of video part {int(i / interval + 1)}: {cur_video_analysis_result}")
if i + frame_nums >= len(video_frames):
break
video_analysis_result = "\n".join(all_res)
except (ValueError, IOError, RuntimeError):
video_analysis_result = ""
logger.error(f"video_analysis-Execute error: {traceback.format_exc()}")
logger.info(f"---get_analysis_by_video-video_analysis_result:{video_analysis_result}")
return video_analysis_result
@mcp.tool(description="Extract subtitles from the video.")
def mcp_extract_video_subtitles(
video_url: str = Field(description="The input video in given filepath or url."),
sample_rate: int = Field(default=2, description="Sample n frames per second."),
start_time: float = Field(default=0, description="Start time of the video segment in seconds."),
end_time: float = Field(default=None, description="End time of the video segment in seconds."),
) -> str:
"""extract subtitles from the video."""
inputs = []
try:
video_frames = get_video_frames(video_url, sample_rate, start_time, end_time)
content = create_video_content(VIDEO_EXTRACT_SUBTITLES, video_frames)
inputs.append({"role": "user", "content": content})
response = client.chat.completions.create(
model=os.getenv("VIDEO_LLM_MODEL_NAME"),
messages=inputs,
temperature=0,
)
video_subtitles = response.choices[0].message.content
except (ValueError, IOError, RuntimeError):
video_subtitles = ""
logger.error(f"video_subtitles-Execute error: {traceback.format_exc()}")
logger.info(f"---get_subtitles_from_video-video_subtitles:{video_subtitles}")
return video_subtitles
@mcp.tool(description="Summarize the main content of the video.")
def mcp_summarize_video(
video_url: str = Field(description="The input video in given filepath or url."),
sample_rate: int = Field(default=2, description="Sample n frames per second."),
start_time: float = Field(default=0, description="Start time of the video segment in seconds."),
end_time: float = Field(default=None, description="End time of the video segment in seconds."),
) -> str:
"""summarize the main content of the video."""
try:
video_frames = get_video_frames(video_url, sample_rate, start_time, end_time)
logger.info(f"---len video_frames:{len(video_frames)}")
interval = 490
frame_nums = 500
all_res = []
for i in range(0, len(video_frames), interval):
inputs = []
cur_frames = video_frames[i : i + frame_nums]
content = create_video_content(VIDEO_SUMMARIZE, cur_frames)
inputs.append({"role": "user", "content": content})
try:
response = client.chat.completions.create(
model=os.getenv("VIDEO_LLM_MODEL_NAME"),
messages=inputs,
temperature=0,
)
logger.info(f"---response:{response}")
cur_video_summary = response.choices[0].message.content
except Exception:
cur_video_summary = ""
all_res.append(f"summary of video part {int(i / interval + 1)}: {cur_video_summary}")
logger.info(f"summary of video part {int(i / interval + 1)}: {cur_video_summary}")
video_summary = "\n".join(all_res)
except (ValueError, IOError, RuntimeError):
video_summary = ""
logger.error(f"video_summary-Execute error: {traceback.format_exc()}")
logger.info(f"---get_summary_from_video-video_summary:{video_summary}")
return video_summary
@mcp.tool(description="Extract key frames around the target time with scene detection")
def get_video_keyframes(
video_path: str = Field(description="The input video in given filepath or url."),
target_time: int = Field(
description=(
"The specific time point for extraction, centered within the window_size argument, the unit is of second."
)
),
window_size: int = Field(
default=5,
description="The window size for extraction, the unit is of second.",
),
cleanup: bool = Field(
default=False,
description="Whether to delete the original video file after processing.",
),
output_dir: str = Field(
default=os.getenv("FILESYSTEM_SERVER_WORKDIR", "./keyframes"),
description="Directory where extracted frames will be saved.",
),
) -> KeyframeResult:
"""Extract key frames around the target time with scene detection.
This function extracts frames from a video file around a specific time point,
using scene detection to identify significant changes between frames. Only frames
with substantial visual differences are saved, reducing redundancy.
Args:
video_path: Path or URL to the video file
target_time: Specific time point (in seconds) to extract frames around
window_size: Time window (in seconds) centered on target_time
cleanup: Whether to delete the original video file after processing
output_dir: Directory where extracted frames will be saved
Returns:
KeyframeResult: A dataclass containing paths to saved frames, timestamps,
and metadata about the extraction process
Raises:
Exception: Exceptions are caught internally and reported in the result
"""
def save_frames(frames, frame_times, output_dir) -> Tuple[List[str], List[float]]:
"""Save extracted frames to disk"""
os.makedirs(output_dir, exist_ok=True)
saved_paths = []
saved_timestamps = []
for _, (frame, timestamp) in enumerate(zip(frames, frame_times)):
filename = f"{output_dir}/frame_{timestamp:.2f}s.jpg"
os.makedirs(output_dir, exist_ok=True)
saved_paths = []
saved_timestamps = []
for _, (frame, timestamp) in enumerate(zip(frames, frame_times)):
filename = f"{output_dir}/frame_{timestamp:.2f}s.jpg"
cv2.imwrite(filename, frame)
saved_paths.append(filename)
saved_timestamps.append(timestamp)
return saved_paths, saved_timestamps
def extract_keyframes(video_path, target_time, window_size) -> Tuple[List[Any], List[float]]:
"""Extract key frames around the target time with scene detection"""
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
# Calculate frame numbers for the time window
start_frame = int((target_time - window_size / 2) * fps)
end_frame = int((target_time + window_size / 2) * fps)
frames = []
frame_times = []
# Set video position to start_frame
cap.set(cv2.CAP_PROP_POS_FRAMES, max(0, start_frame))
prev_frame = None
while cap.isOpened():
frame_pos = cap.get(cv2.CAP_PROP_POS_FRAMES)
if frame_pos >= end_frame:
break
ret, frame = cap.read()
if not ret:
break
# Convert frame to grayscale for scene detection
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# If this is the first frame, save it
if prev_frame is None:
frames.append(frame)
frame_times.append(frame_pos / fps)
else:
# Calculate difference between current and previous frame
diff = cv2.absdiff(gray, prev_frame)
mean_diff = np.mean(diff)
# If significant change detected, save frame
if mean_diff > 20: # Threshold for scene change
frames.append(frame)
frame_times.append(frame_pos / fps)
prev_frame = gray
cap.release()
return frames, frame_times
try:
# Extract keyframes
frames, frame_times = extract_keyframes(video_path, target_time, window_size)
# Save frames
frame_paths, frame_timestamps = save_frames(frames, frame_times, output_dir)
# Cleanup
if cleanup and os.path.exists(video_path):
os.remove(video_path)
return KeyframeResult(
frame_paths=frame_paths,
frame_timestamps=frame_timestamps,
output_directory=output_dir,
frame_count=len(frame_paths),
success=True,
)
except Exception as e:
error_message = f"Error processing video: {str(e)}"
print(error_message)
return KeyframeResult(
frame_paths=[],
frame_timestamps=[],
output_directory=output_dir,
frame_count=0,
success=False,
error_message=error_message,
)
def main():
load_dotenv()
print("Starting Video MCP Server...", file=sys.stderr)
mcp.run(transport="stdio")
# Make the module callable
def __call__():
"""
Make the module callable for uvx.
This function is called when the module is executed directly.
"""
main()
# Add this for compatibility with uvx
sys.modules[__name__].__call__ = __call__
# Run the server when the script is executed directly
if __name__ == "__main__":
main()
|