Final_Assignment_AWorld / aworld /agents /parallel_llm_agent.py
Duibonduil's picture
Upload 6 files
cc54e11 verified
# coding: utf-8
# Copyright (c) 2025 inclusionAI.
from typing import List, Dict, Any, Callable
from aworld.agents.llm_agent import Agent
from aworld.config import RunConfig
from aworld.core.common import Observation, ActionModel, Config
class ParallelizableAgent(Agent):
"""Support for parallel agents in the swarm.
The parameters of the extension function are the agent itself, which can obtain internal information of the agent.
`aggregate_func` function example:
>>> def agg(agent: ParallelizableAgent, res: Dict[str, List[ActionModel]]):
>>> ...
"""
def __init__(self,
conf: Config,
resp_parse_func: Callable[..., Any] = None,
agents: List[Agent] = [],
aggregate_func: Callable[..., Any] = None,
**kwargs):
super().__init__(conf=conf, resp_parse_func=resp_parse_func, **kwargs)
self.agents = agents
# The function of aggregating the results of the parallel execution of agents.
self.aggregate_func = aggregate_func
async def async_policy(self, observation: Observation, info: Dict[str, Any] = {}, **kwargs) -> List[ActionModel]:
from aworld.core.task import Task
from aworld.runners.utils import choose_runners, execute_runner
tasks = []
if self.agents:
for agent in self.agents:
tasks.append(Task(input=observation, agent=agent, context=self.context))
if not tasks:
raise RuntimeError("no task need to run in parallelizable agent.")
runners = await choose_runners(tasks)
res = await execute_runner(runners, RunConfig(reuse_process=False))
if self.aggregate_func:
return self.aggregate_func(self, res)
results = []
for k, v in res.items():
results.append(ActionModel(agent_name=self.id(), policy_info=v.answer))
return results
def finished(self) -> bool:
return all([agent.finished for agent in self.agents])