Spaces:
Sleeping
Sleeping
# coding: utf-8 | |
import requests | |
import json | |
from io import BytesIO | |
import os | |
from typing import Any, Optional, Type | |
import base64 | |
from langchain_core.messages import ( | |
AIMessage, | |
BaseMessage, | |
HumanMessage, | |
SystemMessage, | |
ToolMessage, | |
) | |
from aworld.logs.util import logger | |
def extract_json_from_model_output(content: str) -> dict: | |
"""Extract JSON from model output, handling both plain JSON and code-block-wrapped JSON.""" | |
try: | |
# If content is wrapped in code blocks, extract just the JSON part | |
if '```' in content: | |
# Find the JSON content between code blocks | |
content = content.split('```')[1] | |
# Remove language identifier if present (e.g., 'json\n') | |
if '\n' in content: | |
content = content.split('\n', 1)[1] | |
# Parse the cleaned content | |
return json.loads(content) | |
except json.JSONDecodeError as e: | |
logger.warning(f'Failed to parse model output: {content} {str(e)}') | |
raise ValueError('Could not parse response.') | |
def convert_input_messages(input_messages: list[BaseMessage], model_name: Optional[str]) -> list[BaseMessage]: | |
"""Convert input messages to a format that is compatible with the planner model""" | |
if model_name is None: | |
return input_messages | |
if model_name == 'deepseek-reasoner' or model_name.startswith('deepseek-r1'): | |
converted_input_messages = _convert_messages_for_non_function_calling_models(input_messages) | |
merged_input_messages = _merge_successive_messages(converted_input_messages, HumanMessage) | |
merged_input_messages = _merge_successive_messages(merged_input_messages, AIMessage) | |
return merged_input_messages | |
return input_messages | |
def _convert_messages_for_non_function_calling_models(input_messages: list[BaseMessage]) -> list[BaseMessage]: | |
"""Convert messages for non-function-calling models""" | |
output_messages = [] | |
for message in input_messages: | |
if isinstance(message, HumanMessage): | |
output_messages.append(message) | |
elif isinstance(message, SystemMessage): | |
output_messages.append(message) | |
elif isinstance(message, ToolMessage): | |
output_messages.append(HumanMessage(content=message.content)) | |
elif isinstance(message, AIMessage): | |
# check if tool_calls is a valid JSON object | |
if message.tool_calls: | |
tool_calls = json.dumps(message.tool_calls) | |
output_messages.append(AIMessage(content=tool_calls)) | |
else: | |
output_messages.append(message) | |
else: | |
raise ValueError(f'Unknown message type: {type(message)}') | |
return output_messages | |
def _merge_successive_messages(messages: list[BaseMessage], class_to_merge: Type[BaseMessage]) -> list[BaseMessage]: | |
"""Some models like deepseek-reasoner dont allow multiple human messages in a row. This function merges them into one.""" | |
merged_messages = [] | |
streak = 0 | |
for message in messages: | |
if isinstance(message, class_to_merge): | |
streak += 1 | |
if streak > 1: | |
if isinstance(message.content, list): | |
merged_messages[-1].content += message.content[0]['text'] # type:ignore | |
else: | |
merged_messages[-1].content += message.content | |
else: | |
merged_messages.append(message) | |
else: | |
merged_messages.append(message) | |
streak = 0 | |
return merged_messages | |
def save_conversation(input_messages: list[BaseMessage], response: Any, target: str, | |
encoding: Optional[str] = None) -> None: | |
"""Save conversation history to file.""" | |
# create folders if not exists | |
os.makedirs(os.path.dirname(target), exist_ok=True) | |
with open( | |
target, | |
'w', | |
encoding=encoding, | |
) as f: | |
_write_messages_to_file(f, input_messages) | |
_write_response_to_file(f, response) | |
def _write_messages_to_file(f: Any, messages: list[BaseMessage]) -> None: | |
"""Write messages to conversation file""" | |
for message in messages: | |
f.write(f' {message.__class__.__name__} \n') | |
if isinstance(message.content, list): | |
for item in message.content: | |
if isinstance(item, dict) and item.get('type') == 'text': | |
f.write(item['text'].strip() + '\n') | |
elif isinstance(message.content, str): | |
try: | |
content = json.loads(message.content) | |
f.write(json.dumps(content, indent=2) + '\n') | |
except json.JSONDecodeError: | |
f.write(message.content.strip() + '\n') | |
f.write('\n') | |
def _write_response_to_file(f: Any, response: Any) -> None: | |
"""Write model response to conversation file""" | |
f.write(' RESPONSE\n') | |
f.write(json.dumps(json.loads(response.model_dump_json(exclude_unset=True)), indent=2)) | |
# Add token counting related functions | |
# Note: These functions have been moved from memory.py and agent.py to utils.py, removing the dependency on MessageManager class | |
def estimate_text_tokens(text: str, estimated_characters_per_token: int = 3) -> int: | |
"""Roughly estimate token count in text | |
Args: | |
text: The text to estimate tokens for | |
estimated_characters_per_token: Estimated characters per token, default is 3 | |
Returns: | |
Estimated token count | |
""" | |
if not text: | |
return 0 | |
# Use character count divided by average characters per token to estimate tokens | |
return len(text) // estimated_characters_per_token | |
def estimate_message_tokens(message: BaseMessage, image_tokens: int = 800, | |
estimated_characters_per_token: int = 3) -> int: | |
"""Roughly estimate token count for a single message | |
Args: | |
message: The message to estimate tokens for | |
image_tokens: Estimated tokens per image, default is 800 | |
estimated_characters_per_token: Estimated characters per token, default is 3 | |
Returns: | |
Estimated token count | |
""" | |
tokens = 0 | |
# Handle tuple case | |
if isinstance(message, tuple): | |
# Convert to string and estimate tokens | |
message_str = str(message) | |
return estimate_text_tokens(message_str, estimated_characters_per_token) | |
if isinstance(message.content, list): | |
for item in message.content: | |
if 'image_url' in item: | |
tokens += image_tokens | |
elif isinstance(item, dict) and 'text' in item: | |
tokens += estimate_text_tokens(item['text'], estimated_characters_per_token) | |
else: | |
msg = message.content | |
if hasattr(message, 'tool_calls'): | |
msg += str(message.tool_calls) # type: ignore | |
tokens += estimate_text_tokens(msg, estimated_characters_per_token) | |
return tokens | |
def estimate_messages_tokens(messages: list[BaseMessage], image_tokens: int = 800, | |
estimated_characters_per_token: int = 3) -> int: | |
"""Roughly estimate total token count for a list of messages | |
Args: | |
messages: The list of messages to estimate tokens for | |
image_tokens: Estimated tokens per image, default is 800 | |
estimated_characters_per_token: Estimated characters per token, default is 3 | |
Returns: | |
Estimated total token count | |
""" | |
total_tokens = 0 | |
for msg in messages: | |
total_tokens += estimate_message_tokens(msg, image_tokens, estimated_characters_per_token) | |
return total_tokens | |