services: ray-head: build: context: . dockerfile: Dockerfile_ray platform: linux/amd64 container_name: ray-head hostname: ray-head ports: - "8265:8265" # Ray Dashboard - "10001:10001" # Ray Client Server - "6379:6379" # Redis port for Ray GCS command: > ray start --head --dashboard-host=0.0.0.0 --dashboard-port=8265 --port=6379 --redis-password="" --object-manager-port=8076 --node-manager-port=8077 --min-worker-port=10002 --max-worker-port=19999 --block env_file: - .env networks: - ray-network restart: unless-stopped deploy: resources: limits: memory: 8G reservations: memory: 8G ray-worker: build: context: . dockerfile: Dockerfile_ray platform: linux/amd64 container_name: ray-worker hostname: ray-worker depends_on: - ray-head command: > ray start --address=ray-head:6379 --object-manager-port=8076 --node-manager-port=8077 --min-worker-port=10002 --max-worker-port=19999 --block env_file: - .env networks: - ray-network restart: unless-stopped deploy: resources: limits: memory: 4G reservations: memory: 4G aworld-web-server: build: context: . dockerfile: Dockerfile_ray platform: linux/amd64 container_name: aworld-api-server hostname: aworld-api-server depends_on: - ray-head command: aworld web --port 8000 env_file: - .env networks: - ray-network restart: unless-stopped deploy: resources: limits: memory: 4G reservations: memory: 4G networks: ray-network: driver: bridge volumes: workspace: driver: local