Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
from PIL import Image, ImageDraw | |
from huggingface_hub import hf_hub_download | |
from ultralytics import YOLO | |
import os | |
logger = logging.getLogger(__name__) | |
class ObjectDetector: | |
def __init__(self, model_key="yolov8n.pt", device="cpu"): | |
self.device = device | |
self.model = None | |
self.model_key = model_key.lower().replace(".pt", "") | |
self.repo_map = { | |
"yolov8n": ("ultralytics/yolov8", "yolov8n.pt"), | |
"yolov8s": ("ultralytics/yolov8", "yolov8s.pt"), | |
"yolov8l": ("ultralytics/yolov8", "yolov8l.pt"), | |
"yolov11b": ("Ultralytics/YOLO11", "yolov11b.pt"), | |
} | |
def load_model(self): | |
if self.model is not None: | |
return | |
if self.model_key not in self.repo_map: | |
raise ValueError(f"Unsupported model key: {self.model_key}") | |
repo_id, filename = self.repo_map[self.model_key] | |
weights_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir="models/detection/weights") | |
self.model = YOLO(weights_path) # ✅ ZeroGPU-safe: runtime only | |
def predict(self, image: Image.Image, conf_threshold=0.25): | |
self.load_model() | |
results = self.model(image) | |
detections = [] | |
for r in results: | |
for box in r.boxes: | |
detections.append({ | |
"class_name": r.names[int(box.cls)], | |
"confidence": float(box.conf), | |
"bbox": box.xyxy[0].tolist() | |
}) | |
return detections | |
def draw(self, image: Image.Image, detections, alpha=0.5): | |
overlay = image.copy() | |
draw = ImageDraw.Draw(overlay) | |
for det in detections: | |
bbox = det["bbox"] | |
label = f'{det["class_name"]} {det["confidence"]:.2f}' | |
draw.rectangle(bbox, outline="red", width=2) | |
draw.text((bbox[0], bbox[1]), label, fill="red") | |
return Image.blend(image, overlay, alpha) | |