UVIS / app.py
DurgaDeepak's picture
Update app.py
7eff7af verified
raw
history blame
8.5 kB
# UVIS - Gradio App with Upload, URL & Video Support
"""
This script launches the UVIS (Unified Visual Intelligence System) as a Gradio Web App.
Supports image, video, and URL-based media inputs for detection, segmentation, and depth estimation.
Outputs include scene blueprint, structured JSON, and downloadable results.
"""
import time
import logging
import gradio as gr
from PIL import Image
import cv2
import timeout_decorator
import spaces
from registry import get_model
from core.describe_scene import describe_scene
from core.process import process_image
from core.input_handler import resolve_input, validate_video, validate_image
from utils.helpers import format_error, generate_session_id
from huggingface_hub import hf_hub_download
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Model mappings
DETECTION_MODEL_MAP = {
"YOLOv5-Nano": "yolov5n-seg",
"YOLOv5-Small": "yolov5s-seg",
"YOLOv8-Small": "yolov8s",
"YOLOv8-Large": "yolov8l",
"RT-DETR": "rtdetr" # For future support
}
SEGMENTATION_MODEL_MAP = {
"SegFormer-B0": "nvidia/segformer-b0-finetuned-ade-512-512",
"SegFormer-B5": "nvidia/segformer-b5-finetuned-ade-512-512",
"DeepLabV3-ResNet50": "deeplabv3_resnet50"
}
DEPTH_MODEL_MAP = {
"MiDaS v21 Small 256": "midas_v21_small_256",
"MiDaS v21 384": "midas_v21_384",
"DPT Hybrid 384": "dpt_hybrid_384",
"DPT Swin2 Large 384": "dpt_swin2_large_384",
"DPT Beit Large 512": "dpt_beit_large_512"
}
# Resource Limits
MAX_IMAGE_MB = 5
MAX_IMAGE_RES = (1920, 1080)
MAX_VIDEO_MB = 50
MAX_VIDEO_DURATION = 30 # seconds
@spaces.GPU
def preload_models():
"""
This function is needed to activate ZeroGPU. It must be decorated with @spaces.GPU.
It can be used to warm up models or load them into memory.
"""
from registry import get_model
print("Warming up models for ZeroGPU...")
get_model("detection", "yolov5n-seg", device="cpu")
get_model("segmentation", "deeplabv3_resnet50", device="cpu")
get_model("depth", "midas_v21_small_256", device="cpu")
# Main Handler
def handle(mode, media_upload, url, run_det, det_model, det_confidence, run_seg, seg_model, run_depth, depth_model, blend):
"""
Master handler for resolving input and processing.
Returns outputs for Gradio interface.
"""
session_id = generate_session_id()
logger.info(f"Session ID: {session_id} | Handler activated with mode: {mode}")
start_time = time.time()
media = resolve_input(mode, media_upload, url)
if not media:
return None, format_error("No valid input provided. Please check your upload or URL."), None
results = []
for single_media in media:
if isinstance(single_media, str): # Video file
valid, err = validate_video(single_media)
if not valid:
return None, format_error(err), None
cap = cv2.VideoCapture(single_media)
ret, frame = cap.read()
cap.release()
if not ret:
return None, format_error("Failed to read video frame."), None
single_media = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if isinstance(single_media, Image.Image):
valid, err = validate_image(single_media)
if not valid:
return None, format_error(err), None
try:
return process_image(single_media, run_det, det_model, det_confidence, run_seg, seg_model, run_depth, depth_model, blend)
except timeout_decorator.timeout_decorator.TimeoutError:
logger.error("Image processing timed out.")
return None, format_error("Processing timed out. Try a smaller image or simpler model."), None
logger.warning("Unsupported media type resolved.")
log_runtime(start_time)
return None, format_error("Invalid input. Please check your upload or URL."), None
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## Unified Visual Intelligence System (UVIS)")
with gr.Row():
# left panel
with gr.Column(scale=2):
# Input Mode Toggle
mode = gr.Radio(["Upload", "URL"], value="Upload", label="Input Mode")
# File upload: accepts multiple images or one video (user chooses wisely)
media_upload = gr.File(
label="Upload Images (1–5) or 1 Video",
file_types=["image", ".mp4", ".mov", ".avi"],
file_count="multiple"
)
# URL input
url = gr.Textbox(label="URL (Image/Video)", visible=False)
# Toggle visibility
def toggle_inputs(selected_mode):
return [
gr.update(visible=(selected_mode == "Upload")), # media_upload
gr.update(visible=(selected_mode == "URL")) # url
]
mode.change(toggle_inputs, inputs=mode, outputs=[media_upload, url])
# Visibility logic function
def toggle_visibility(checked):
return gr.update(visible=checked)
def toggle_det_visibility(checked):
return [gr.update(visible=checked), gr.update(visible=checked)]
run_det = gr.Checkbox(label="Object Detection")
run_seg = gr.Checkbox(label="Semantic Segmentation")
run_depth = gr.Checkbox(label="Depth Estimation")
with gr.Row():
with gr.Column(visible=False) as OD_Settings:
with gr.Accordion("Object Detection Settings", open=True):
det_model = gr.Dropdown(choices=list(DETECTION_MODEL_MAP), label="Detection Model")
det_confidence = gr.Slider(0.1, 1.0, 0.5, label="Detection Confidence Threshold")
with gr.Column(visible=False) as SS_Settings:
with gr.Accordion("Semantic Segmentation Settings", open=True):
seg_model = gr.Dropdown(choices=list(SEGMENTATION_MODEL_MAP), label="Segmentation Model")
with gr.Column(visible=False) as DE_Settings:
with gr.Accordion("Depth Estimation Settings", open=True):
depth_model = gr.Dropdown(choices=list(DEPTH_MODEL_MAP), label="Depth Model")
# Attach Visibility Logic
run_det.change(fn=toggle_visibility, inputs=[run_det], outputs=[OD_Settings])
run_seg.change(fn=toggle_visibility, inputs=[run_seg], outputs=[SS_Settings])
run_depth.change(fn=toggle_visibility, inputs=[run_depth], outputs=[DE_Settings])
blend = gr.Slider(0.0, 1.0, 0.5, label="Overlay Blend")
# Run Button
run = gr.Button("Run Analysis")
#Right panel
with gr.Column(scale=1):
# single_img_preview = gr.Image(label="Preview (Image)", visible=False)
# gallery_preview = gr.Gallery(label="Preview (Gallery)", columns=3, height="auto", visible=False)
# video_preview = gr.Video(label="Preview (Video)", visible=False)
img_out = gr.Image(label="Scene Blueprint")
json_out = gr.JSON(label="Scene JSON")
zip_out = gr.File(label="Download Results")
# # Output Tabs
# with gr.Tab("Scene JSON"):
# json_out = gr.JSON()
# with gr.Tab("Scene Blueprint"):
# img_out = gr.Image()
# with gr.Tab("Download"):
# zip_out = gr.File()
# Button Click Event
run.click(
handle,
inputs=[mode, media_upload, url, run_det, det_model, det_confidence, run_seg, seg_model, run_depth, depth_model, blend],
outputs=[img_out, json_out, zip_out]
)
# Footer Section
gr.Markdown("---")
gr.Markdown(
"""
<div style='text-align: center; font-size: 14px;'>
Built by <b>Durga Deepak Valluri</b><br>
<a href="https://github.com/DurgaDeepakValluri" target="_blank">GitHub</a> |
<a href="https://deecoded.io" target="_blank">Website</a> |
<a href="https://www.linkedin.com/in/durga-deepak-valluri" target="_blank">LinkedIn</a>
</div>
""",
)
# Launch the Gradio App
demo.launch()