Spaces:
Running
on
Zero
Running
on
Zero
Update models/segmentation/segmenter.py
Browse files- models/segmentation/segmenter.py +89 -89
models/segmentation/segmenter.py
CHANGED
@@ -1,89 +1,89 @@
|
|
1 |
-
import logging
|
2 |
-
import torch
|
3 |
-
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
from torchvision import transforms
|
6 |
-
from torchvision.models.segmentation import deeplabv3_resnet50
|
7 |
-
from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
|
8 |
-
|
9 |
-
logger = logging.getLogger(__name__)
|
10 |
-
|
11 |
-
class Segmenter:
|
12 |
-
"""
|
13 |
-
Generalized Semantic Segmentation Wrapper for SegFormer and DeepLabV3.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self, model_key="nvidia/segformer-b0-finetuned-ade-512-512", device="cpu"):
|
17 |
-
"""
|
18 |
-
Initialize the segmentation model.
|
19 |
-
|
20 |
-
Args:
|
21 |
-
model_key (str): Model identifier, e.g., Hugging Face model id or 'deeplabv3_resnet50'.
|
22 |
-
device (str): Inference device ("cpu" or "cuda").
|
23 |
-
"""
|
24 |
-
logger.info(f"Initializing segmenter with model: {model_key}")
|
25 |
-
self.device = device
|
26 |
-
self.model_key = model_key
|
27 |
-
self.model, self.processor = self._load_model()
|
28 |
-
|
29 |
-
def _load_model(self):
|
30 |
-
"""
|
31 |
-
Load the segmentation model and processor.
|
32 |
-
|
33 |
-
Returns:
|
34 |
-
Tuple[torch.nn.Module, Optional[Processor]]
|
35 |
-
"""
|
36 |
-
if "segformer" in self.model_key:
|
37 |
-
model = SegformerForSemanticSegmentation.from_pretrained(self.model_key).to(self.device)
|
38 |
-
processor = SegformerFeatureExtractor.from_pretrained(self.model_key)
|
39 |
-
return model, processor
|
40 |
-
elif self.model_key == "deeplabv3_resnet50":
|
41 |
-
model = deeplabv3_resnet50(pretrained=True).to(self.device).eval()
|
42 |
-
return model, None
|
43 |
-
else:
|
44 |
-
raise ValueError(f"Unsupported model key: {self.model_key}")
|
45 |
-
|
46 |
-
def predict(self, image: Image.Image):
|
47 |
-
"""
|
48 |
-
Perform segmentation on the input image.
|
49 |
-
|
50 |
-
Args:
|
51 |
-
image (PIL.Image.Image): Input image.
|
52 |
-
|
53 |
-
Returns:
|
54 |
-
np.ndarray: Segmentation mask.
|
55 |
-
"""
|
56 |
-
logger.info("Running segmentation")
|
57 |
-
|
58 |
-
if "segformer" in self.model_key:
|
59 |
-
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
|
60 |
-
outputs = self.model(**inputs)
|
61 |
-
mask = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
|
62 |
-
return mask
|
63 |
-
|
64 |
-
elif self.model_key == "deeplabv3_resnet50":
|
65 |
-
transform = transforms.Compose([
|
66 |
-
transforms.ToTensor(),
|
67 |
-
])
|
68 |
-
inputs = transform(image).unsqueeze(0).to(self.device)
|
69 |
-
with torch.no_grad():
|
70 |
-
outputs = self.model(inputs)["out"]
|
71 |
-
mask = outputs.argmax(1).squeeze().cpu().numpy()
|
72 |
-
return mask
|
73 |
-
|
74 |
-
def draw(self, image: Image.Image, mask: np.ndarray, alpha=0.5):
|
75 |
-
"""
|
76 |
-
Overlay the segmentation mask on the input image.
|
77 |
-
|
78 |
-
Args:
|
79 |
-
image (PIL.Image.Image): Original image.
|
80 |
-
mask (np.ndarray): Segmentation mask.
|
81 |
-
alpha (float): Blend strength.
|
82 |
-
|
83 |
-
Returns:
|
84 |
-
PIL.Image.Image: Image with mask overlay.
|
85 |
-
"""
|
86 |
-
logger.info("Drawing segmentation overlay")
|
87 |
-
mask_img = Image.fromarray((mask * 255 / mask.max()).astype(np.uint8)).convert("L").resize(image.size)
|
88 |
-
mask_colored = Image.merge("RGB", (mask_img, mask_img, mask_img))
|
89 |
-
return Image.blend(image, mask_colored, alpha)
|
|
|
1 |
+
import logging
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
from torchvision import transforms
|
6 |
+
from torchvision.models.segmentation import deeplabv3_resnet50
|
7 |
+
from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
class Segmenter:
|
12 |
+
"""
|
13 |
+
Generalized Semantic Segmentation Wrapper for SegFormer and DeepLabV3.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, model_key="nvidia/segformer-b0-finetuned-ade-512-512", device="cpu"):
|
17 |
+
"""
|
18 |
+
Initialize the segmentation model.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
model_key (str): Model identifier, e.g., Hugging Face model id or 'deeplabv3_resnet50'.
|
22 |
+
device (str): Inference device ("cpu" or "cuda").
|
23 |
+
"""
|
24 |
+
logger.info(f"Initializing segmenter with model: {model_key}")
|
25 |
+
self.device = device
|
26 |
+
self.model_key = model_key
|
27 |
+
self.model, self.processor = self._load_model()
|
28 |
+
|
29 |
+
def _load_model(self):
|
30 |
+
"""
|
31 |
+
Load the segmentation model and processor.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
Tuple[torch.nn.Module, Optional[Processor]]
|
35 |
+
"""
|
36 |
+
if "segformer" in self.model_key:
|
37 |
+
model = SegformerForSemanticSegmentation.from_pretrained(self.model_key).to(self.device)
|
38 |
+
processor = SegformerFeatureExtractor.from_pretrained(self.model_key)
|
39 |
+
return model, processor
|
40 |
+
elif self.model_key == "deeplabv3_resnet50":
|
41 |
+
model = deeplabv3_resnet50(pretrained=True).to(self.device).eval()
|
42 |
+
return model, None
|
43 |
+
else:
|
44 |
+
raise ValueError(f"Unsupported model key: {self.model_key}")
|
45 |
+
|
46 |
+
def predict(self, image: Image.Image, **kwargs):
|
47 |
+
"""
|
48 |
+
Perform segmentation on the input image.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
image (PIL.Image.Image): Input image.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
np.ndarray: Segmentation mask.
|
55 |
+
"""
|
56 |
+
logger.info("Running segmentation")
|
57 |
+
|
58 |
+
if "segformer" in self.model_key:
|
59 |
+
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
|
60 |
+
outputs = self.model(**inputs)
|
61 |
+
mask = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
|
62 |
+
return mask
|
63 |
+
|
64 |
+
elif self.model_key == "deeplabv3_resnet50":
|
65 |
+
transform = transforms.Compose([
|
66 |
+
transforms.ToTensor(),
|
67 |
+
])
|
68 |
+
inputs = transform(image).unsqueeze(0).to(self.device)
|
69 |
+
with torch.no_grad():
|
70 |
+
outputs = self.model(inputs)["out"]
|
71 |
+
mask = outputs.argmax(1).squeeze().cpu().numpy()
|
72 |
+
return mask
|
73 |
+
|
74 |
+
def draw(self, image: Image.Image, mask: np.ndarray, alpha=0.5):
|
75 |
+
"""
|
76 |
+
Overlay the segmentation mask on the input image.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
image (PIL.Image.Image): Original image.
|
80 |
+
mask (np.ndarray): Segmentation mask.
|
81 |
+
alpha (float): Blend strength.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
PIL.Image.Image: Image with mask overlay.
|
85 |
+
"""
|
86 |
+
logger.info("Drawing segmentation overlay")
|
87 |
+
mask_img = Image.fromarray((mask * 255 / mask.max()).astype(np.uint8)).convert("L").resize(image.size)
|
88 |
+
mask_colored = Image.merge("RGB", (mask_img, mask_img, mask_img))
|
89 |
+
return Image.blend(image, mask_colored, alpha)
|