Spaces:
Running
on
Zero
Running
on
Zero
Update models/segmentation/segmenter.py
Browse files- models/segmentation/segmenter.py +75 -40
models/segmentation/segmenter.py
CHANGED
@@ -4,86 +4,121 @@ from PIL import Image
|
|
4 |
import numpy as np
|
5 |
from torchvision import transforms
|
6 |
from torchvision.models.segmentation import deeplabv3_resnet50
|
7 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
logger = logging.getLogger(__name__)
|
|
|
10 |
|
11 |
class Segmenter:
|
12 |
"""
|
13 |
-
Generalized Semantic Segmentation Wrapper for SegFormer and
|
14 |
"""
|
15 |
|
16 |
def __init__(self, model_key="nvidia/segformer-b0-finetuned-ade-512-512", device="cpu"):
|
17 |
"""
|
18 |
-
Initialize the segmentation model.
|
19 |
-
|
20 |
Args:
|
21 |
-
model_key (str):
|
22 |
-
device (str):
|
23 |
"""
|
24 |
-
logger.info(f"Initializing
|
|
|
25 |
self.device = device
|
26 |
-
self.
|
27 |
-
self.
|
28 |
|
29 |
def _load_model(self):
|
30 |
"""
|
31 |
-
|
32 |
-
|
33 |
-
Returns:
|
34 |
-
Tuple[torch.nn.Module, Optional[Processor]]
|
35 |
"""
|
|
|
|
|
|
|
|
|
36 |
if "segformer" in self.model_key:
|
37 |
-
model = SegformerForSemanticSegmentation.from_pretrained(self.model_key).to(self.device)
|
38 |
-
processor = SegformerFeatureExtractor.from_pretrained(self.model_key)
|
39 |
-
|
|
|
40 |
elif self.model_key == "deeplabv3_resnet50":
|
41 |
-
model = deeplabv3_resnet50(pretrained=True).to(self.device).eval()
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
else:
|
44 |
-
raise ValueError(f"Unsupported model key: {self.model_key}")
|
|
|
|
|
45 |
|
46 |
-
def predict(self, image: Image.Image, **kwargs):
|
47 |
"""
|
48 |
-
Perform segmentation
|
49 |
|
50 |
Args:
|
51 |
-
image (PIL.Image.Image): Input
|
52 |
-
|
53 |
Returns:
|
54 |
-
np.ndarray: Segmentation mask.
|
55 |
"""
|
56 |
-
|
57 |
|
|
|
58 |
if "segformer" in self.model_key:
|
59 |
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
|
60 |
outputs = self.model(**inputs)
|
61 |
mask = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
|
62 |
return mask
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
with torch.no_grad():
|
70 |
-
outputs = self.model(inputs)
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
75 |
"""
|
76 |
Overlay the segmentation mask on the input image.
|
77 |
|
78 |
Args:
|
79 |
-
image (PIL.Image.Image): Original
|
80 |
mask (np.ndarray): Segmentation mask.
|
81 |
alpha (float): Blend strength.
|
82 |
-
|
83 |
Returns:
|
84 |
-
PIL.Image.Image:
|
85 |
"""
|
86 |
logger.info("Drawing segmentation overlay")
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
from torchvision import transforms
|
6 |
from torchvision.models.segmentation import deeplabv3_resnet50
|
7 |
+
from transformers import (
|
8 |
+
SegformerForSemanticSegmentation,
|
9 |
+
SegformerFeatureExtractor,
|
10 |
+
AutoProcessor,
|
11 |
+
CLIPSegForImageSegmentation,
|
12 |
+
)
|
13 |
|
14 |
logger = logging.getLogger(__name__)
|
15 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
16 |
|
17 |
class Segmenter:
|
18 |
"""
|
19 |
+
Generalized Semantic Segmentation Wrapper for SegFormer, DeepLabV3, and CLIPSeg.
|
20 |
"""
|
21 |
|
22 |
def __init__(self, model_key="nvidia/segformer-b0-finetuned-ade-512-512", device="cpu"):
|
23 |
"""
|
|
|
|
|
24 |
Args:
|
25 |
+
model_key (str): HF model identifier or 'deeplabv3_resnet50'.
|
26 |
+
device (str): 'cpu' or 'cuda'.
|
27 |
"""
|
28 |
+
logger.info(f"Initializing Segmenter for model '{model_key}' on {device}")
|
29 |
+
self.model_key = model_key.lower()
|
30 |
self.device = device
|
31 |
+
self.model = None
|
32 |
+
self.processor = None # for transformers-based models
|
33 |
|
34 |
def _load_model(self):
|
35 |
"""
|
36 |
+
Lazy-load the model & processor based on model_key.
|
|
|
|
|
|
|
37 |
"""
|
38 |
+
if self.model is not None:
|
39 |
+
return
|
40 |
+
|
41 |
+
# SegFormer
|
42 |
if "segformer" in self.model_key:
|
43 |
+
self.model = SegformerForSemanticSegmentation.from_pretrained(self.model_key).to(self.device).eval()
|
44 |
+
self.processor = SegformerFeatureExtractor.from_pretrained(self.model_key)
|
45 |
+
|
46 |
+
# DeepLabV3
|
47 |
elif self.model_key == "deeplabv3_resnet50":
|
48 |
+
self.model = deeplabv3_resnet50(pretrained=True).to(self.device).eval()
|
49 |
+
self.processor = None
|
50 |
+
|
51 |
+
# CLIPSeg
|
52 |
+
elif "clipseg" in self.model_key:
|
53 |
+
self.model = CLIPSegForImageSegmentation.from_pretrained(self.model_key).to(self.device).eval()
|
54 |
+
self.processor = AutoProcessor.from_pretrained(self.model_key)
|
55 |
+
|
56 |
else:
|
57 |
+
raise ValueError(f"Unsupported segmentation model key: '{self.model_key}'")
|
58 |
+
|
59 |
+
logger.info(f"Loaded segmentation model '{self.model_key}'")
|
60 |
|
61 |
+
def predict(self, image: Image.Image, prompt: str = "", **kwargs) -> np.ndarray:
|
62 |
"""
|
63 |
+
Perform segmentation.
|
64 |
|
65 |
Args:
|
66 |
+
image (PIL.Image.Image): Input.
|
67 |
+
prompt (str): Only used for CLIPSeg.
|
68 |
Returns:
|
69 |
+
np.ndarray: Segmentation mask (H×W).
|
70 |
"""
|
71 |
+
self._load_model()
|
72 |
|
73 |
+
# SegFormer path
|
74 |
if "segformer" in self.model_key:
|
75 |
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
|
76 |
outputs = self.model(**inputs)
|
77 |
mask = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
|
78 |
return mask
|
79 |
|
80 |
+
# DeepLabV3 path
|
81 |
+
if self.model_key == "deeplabv3_resnet50":
|
82 |
+
tf = transforms.ToTensor()
|
83 |
+
inp = tf(image).unsqueeze(0).to(self.device)
|
84 |
+
with torch.no_grad():
|
85 |
+
out = self.model(inp)["out"]
|
86 |
+
mask = out.argmax(1).squeeze().cpu().numpy()
|
87 |
+
return mask
|
88 |
+
|
89 |
+
# CLIPSeg path
|
90 |
+
if "clipseg" in self.model_key:
|
91 |
+
# CLIPSeg expects both text and image
|
92 |
+
inputs = self.processor(
|
93 |
+
text=[prompt], # list of prompts
|
94 |
+
images=[image], # list of images
|
95 |
+
return_tensors="pt"
|
96 |
+
).to(self.device)
|
97 |
with torch.no_grad():
|
98 |
+
outputs = self.model(**inputs)
|
99 |
+
# outputs.logits shape: (batch=1, height, width)
|
100 |
+
mask = outputs.logits.squeeze(0).cpu().numpy()
|
101 |
+
# Optionally threshold to binary:
|
102 |
+
# mask = (mask > kwargs.get("threshold", 0.5)).astype(np.uint8)
|
103 |
+
return mask
|
104 |
|
105 |
+
raise RuntimeError("Unreachable segmentation branch")
|
106 |
+
|
107 |
+
def draw(self, image: Image.Image, mask: np.ndarray, alpha=0.5) -> Image.Image:
|
108 |
"""
|
109 |
Overlay the segmentation mask on the input image.
|
110 |
|
111 |
Args:
|
112 |
+
image (PIL.Image.Image): Original.
|
113 |
mask (np.ndarray): Segmentation mask.
|
114 |
alpha (float): Blend strength.
|
|
|
115 |
Returns:
|
116 |
+
PIL.Image.Image: Blended output.
|
117 |
"""
|
118 |
logger.info("Drawing segmentation overlay")
|
119 |
+
# Normalize mask to 0–255
|
120 |
+
gray = ((mask - mask.min()) / (mask.ptp()) * 255).astype(np.uint8)
|
121 |
+
mask_img = Image.fromarray(gray).convert("L").resize(image.size)
|
122 |
+
# Make it RGB
|
123 |
+
color_mask = Image.merge("RGB", (mask_img, mask_img, mask_img))
|
124 |
+
return Image.blend(image, color_mask, alpha)
|