Spaces:
Running
on
Zero
Running
on
Zero
Update core/process.py
Browse files- core/process.py +119 -0
core/process.py
CHANGED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import time
|
3 |
+
import timeout_decorator
|
4 |
+
|
5 |
+
@timeout_decorator.timeout(35, use_signals=False) # 35 sec limit per image
|
6 |
+
def process_image(
|
7 |
+
image: Image.Image,
|
8 |
+
run_det: bool,
|
9 |
+
det_model: str,
|
10 |
+
det_confidence: float,
|
11 |
+
run_seg: bool,
|
12 |
+
seg_model: str,
|
13 |
+
run_depth: bool,
|
14 |
+
depth_model: str,
|
15 |
+
blend: float
|
16 |
+
):
|
17 |
+
"""
|
18 |
+
Runs selected perception tasks on the input image and packages results.
|
19 |
+
Args:
|
20 |
+
image (PIL.Image): Input image.
|
21 |
+
run_det (bool): Run object detection.
|
22 |
+
det_model (str): Detection model key.
|
23 |
+
det_confidence (float): Detection confidence threshold.
|
24 |
+
run_seg (bool): Run segmentation.
|
25 |
+
seg_model (str): Segmentation model key.
|
26 |
+
run_depth (bool): Run depth estimation.
|
27 |
+
depth_model (str): Depth model key.
|
28 |
+
blend (float): Overlay blend alpha (0.0 - 1.0).
|
29 |
+
Returns:
|
30 |
+
Tuple[Image, dict, Tuple[str, bytes]]: Final image, scene JSON, and downloadable ZIP.
|
31 |
+
"""
|
32 |
+
logger.info("Starting image processing pipeline.")
|
33 |
+
start_time = time.time()
|
34 |
+
outputs, scene = {}, {}
|
35 |
+
combined_np = np.array(image)
|
36 |
+
|
37 |
+
try:
|
38 |
+
# Detection
|
39 |
+
if run_det:
|
40 |
+
logger.info(f"Running detection with model: {det_model}")
|
41 |
+
load_start = time.time()
|
42 |
+
model = get_model("detection", DETECTION_MODEL_MAP[det_model], device="cpu")
|
43 |
+
logger.info(f"{det_model} detection model loaded in {time.time() - load_start:.2f} seconds.")
|
44 |
+
boxes = model.predict(image, conf_threshold=det_confidence)
|
45 |
+
overlay = model.draw(image, boxes)
|
46 |
+
combined_np = np.array(overlay)
|
47 |
+
buf = io.BytesIO()
|
48 |
+
overlay.save(buf, format="PNG")
|
49 |
+
outputs["detection.png"] = buf.getvalue()
|
50 |
+
scene["detection"] = boxes
|
51 |
+
|
52 |
+
# Segmentation
|
53 |
+
if run_seg:
|
54 |
+
logger.info(f"Running segmentation with model: {seg_model}")
|
55 |
+
load_start = time.time()
|
56 |
+
model = get_model("segmentation", SEGMENTATION_MODEL_MAP[seg_model], device="cpu")
|
57 |
+
logger.info(f"{seg_model} segmentation model loaded in {time.time() - load_start:.2f} seconds.")
|
58 |
+
mask = model.predict(image)
|
59 |
+
overlay = model.draw(image, mask, alpha=blend)
|
60 |
+
combined_np = cv2.addWeighted(combined_np, 1 - blend, np.array(overlay), blend, 0)
|
61 |
+
buf = io.BytesIO()
|
62 |
+
overlay.save(buf, format="PNG")
|
63 |
+
outputs["segmentation.png"] = buf.getvalue()
|
64 |
+
scene["segmentation"] = mask.tolist()
|
65 |
+
|
66 |
+
# Depth Estimation
|
67 |
+
if run_depth:
|
68 |
+
logger.info(f"Running depth estimation with model: {depth_model}")
|
69 |
+
load_start = time.time()
|
70 |
+
model = get_model("depth", DEPTH_MODEL_MAP[depth_model], device="cpu")
|
71 |
+
logger.info(f"{depth_model} depth model loaded in {time.time() - load_start:.2f} seconds.")
|
72 |
+
dmap = model.predict(image)
|
73 |
+
norm_dmap = ((dmap - dmap.min()) / (dmap.ptp()) * 255).astype(np.uint8)
|
74 |
+
d_pil = Image.fromarray(norm_dmap)
|
75 |
+
combined_np = cv2.addWeighted(combined_np, 1 - blend, np.array(d_pil.convert("RGB")), blend, 0)
|
76 |
+
buf = io.BytesIO()
|
77 |
+
d_pil.save(buf, format="PNG")
|
78 |
+
outputs["depth_map.png"] = buf.getvalue()
|
79 |
+
scene["depth"] = dmap.tolist()
|
80 |
+
|
81 |
+
# Final image overlay
|
82 |
+
final_img = Image.fromarray(combined_np)
|
83 |
+
buf = io.BytesIO()
|
84 |
+
final_img.save(buf, format="PNG")
|
85 |
+
outputs["scene_blueprint.png"] = buf.getvalue()
|
86 |
+
|
87 |
+
# Scene description
|
88 |
+
try:
|
89 |
+
scene_json = describe_scene(**scene)
|
90 |
+
except Exception as e:
|
91 |
+
logger.warning(f"describe_scene failed: {e}")
|
92 |
+
scene_json = {"error": str(e)}
|
93 |
+
telemetry = {
|
94 |
+
"session_id": generate_session_id(),
|
95 |
+
"runtime_sec": round(log_runtime(start_time), 2),
|
96 |
+
"used_models": {
|
97 |
+
"detection": det_model if run_det else None,
|
98 |
+
"segmentation": seg_model if run_seg else None,
|
99 |
+
"depth": depth_model if run_depth else None
|
100 |
+
}
|
101 |
+
}
|
102 |
+
scene_json["telemetry"] = telemetry
|
103 |
+
|
104 |
+
outputs["scene_description.json"] = json.dumps(scene_json, indent=2).encode("utf-8")
|
105 |
+
|
106 |
+
# ZIP file creation
|
107 |
+
zip_buf = io.BytesIO()
|
108 |
+
with zipfile.ZipFile(zip_buf, "w") as zipf:
|
109 |
+
for name, data in outputs.items():
|
110 |
+
zipf.writestr(name, data)
|
111 |
+
|
112 |
+
elapsed = log_runtime(start_time)
|
113 |
+
logger.info(f"Image processing completed in {elapsed:.2f} seconds.")
|
114 |
+
|
115 |
+
return final_img, scene_json, ("uvis_results.zip", zip_buf.getvalue())
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
logger.error(f"Error in processing pipeline: {e}")
|
119 |
+
return None, {"error": str(e)}, None
|