Spaces:
Running
on
Zero
Running
on
Zero
Update models/detection/detector.py
Browse files- models/detection/detector.py +21 -15
models/detection/detector.py
CHANGED
@@ -4,6 +4,7 @@ from huggingface_hub import hf_hub_download
|
|
4 |
from ultralytics import YOLO
|
5 |
import os
|
6 |
import shutil
|
|
|
7 |
|
8 |
# Setup logger
|
9 |
logger = logging.getLogger(__name__)
|
@@ -13,15 +14,16 @@ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(
|
|
13 |
shutil.rmtree("models/detection/weights", ignore_errors=True)
|
14 |
|
15 |
class ObjectDetector:
|
16 |
-
def __init__(self, model_key="yolov8n", device="cpu"):
|
17 |
"""
|
18 |
Initializes an Ultralytics YOLO model using HF download path.
|
19 |
|
20 |
Args:
|
21 |
-
model_key (str): e.g. 'yolov8n', 'yolov8s', etc.
|
22 |
device (str): 'cpu' or 'cuda'
|
23 |
"""
|
24 |
-
|
|
|
25 |
alias_map = {
|
26 |
"yolov8n": "yolov8n",
|
27 |
"yolov8s": "yolov8s",
|
@@ -29,9 +31,6 @@ class ObjectDetector:
|
|
29 |
"yolov11b": "yolov11b"
|
30 |
}
|
31 |
|
32 |
-
resolved_key = model_key.lower().replace(".pt", "")
|
33 |
-
|
34 |
-
# HF repo map
|
35 |
hf_map = {
|
36 |
"yolov8n": ("ultralytics/yolov8", "yolov8n.pt"),
|
37 |
"yolov8s": ("ultralytics/yolov8", "yolov8s.pt"),
|
@@ -39,25 +38,32 @@ class ObjectDetector:
|
|
39 |
"yolov11b": ("Ultralytics/YOLO11", "yolov11b.pt"),
|
40 |
}
|
41 |
|
|
|
42 |
if resolved_key not in hf_map:
|
43 |
raise ValueError(f"Unsupported model key: {resolved_key}")
|
44 |
|
45 |
repo_id, filename = hf_map[resolved_key]
|
46 |
-
|
47 |
-
# π₯ Download from HF Hub
|
48 |
-
weights_path = hf_hub_download(
|
49 |
repo_id=repo_id,
|
50 |
filename=filename,
|
51 |
cache_dir="models/detection/weights",
|
52 |
-
force_download=
|
53 |
)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def predict(self, image: Image.Image, conf_threshold=0.25):
|
60 |
-
|
|
|
61 |
results = self.model(image)
|
62 |
detections = []
|
63 |
for r in results:
|
@@ -67,7 +73,7 @@ class ObjectDetector:
|
|
67 |
"confidence": float(box.conf),
|
68 |
"bbox": box.xyxy[0].tolist()
|
69 |
})
|
70 |
-
logger.info(f"Detected {len(detections)} objects")
|
71 |
return detections
|
72 |
|
73 |
def draw(self, image: Image.Image, detections, alpha=0.5):
|
|
|
4 |
from ultralytics import YOLO
|
5 |
import os
|
6 |
import shutil
|
7 |
+
import torch
|
8 |
|
9 |
# Setup logger
|
10 |
logger = logging.getLogger(__name__)
|
|
|
14 |
shutil.rmtree("models/detection/weights", ignore_errors=True)
|
15 |
|
16 |
class ObjectDetector:
|
17 |
+
def __init__(self, model_key="yolov8n.pt", device="cpu"):
|
18 |
"""
|
19 |
Initializes an Ultralytics YOLO model using HF download path.
|
20 |
|
21 |
Args:
|
22 |
+
model_key (str): e.g. 'yolov8n.pt', 'yolov8s.pt', etc.
|
23 |
device (str): 'cpu' or 'cuda'
|
24 |
"""
|
25 |
+
self.device = device
|
26 |
+
resolved_key = model_key.lower().replace(".pt", "")
|
27 |
alias_map = {
|
28 |
"yolov8n": "yolov8n",
|
29 |
"yolov8s": "yolov8s",
|
|
|
31 |
"yolov11b": "yolov11b"
|
32 |
}
|
33 |
|
|
|
|
|
|
|
34 |
hf_map = {
|
35 |
"yolov8n": ("ultralytics/yolov8", "yolov8n.pt"),
|
36 |
"yolov8s": ("ultralytics/yolov8", "yolov8s.pt"),
|
|
|
38 |
"yolov11b": ("Ultralytics/YOLO11", "yolov11b.pt"),
|
39 |
}
|
40 |
|
41 |
+
resolved_key = alias_map.get(resolved_key, resolved_key)
|
42 |
if resolved_key not in hf_map:
|
43 |
raise ValueError(f"Unsupported model key: {resolved_key}")
|
44 |
|
45 |
repo_id, filename = hf_map[resolved_key]
|
46 |
+
self.weights_path = hf_hub_download(
|
|
|
|
|
47 |
repo_id=repo_id,
|
48 |
filename=filename,
|
49 |
cache_dir="models/detection/weights",
|
50 |
+
force_download=False
|
51 |
)
|
52 |
|
53 |
+
self.model = None # π Don't initialize on construction
|
54 |
+
logger.info(f"Model path ready for {resolved_key}: {self.weights_path}")
|
55 |
+
|
56 |
+
def load_model(self):
|
57 |
+
if self.model is None:
|
58 |
+
logger.info("β³ Loading YOLO model into memory...")
|
59 |
+
self.model = YOLO(self.weights_path)
|
60 |
+
if self.device == "cuda" and torch.cuda.is_available():
|
61 |
+
self.model.to("cuda")
|
62 |
+
logger.info(f"β
YOLO model loaded on {self.device}")
|
63 |
|
64 |
def predict(self, image: Image.Image, conf_threshold=0.25):
|
65 |
+
self.load_model()
|
66 |
+
logger.info("π Running object detection")
|
67 |
results = self.model(image)
|
68 |
detections = []
|
69 |
for r in results:
|
|
|
73 |
"confidence": float(box.conf),
|
74 |
"bbox": box.xyxy[0].tolist()
|
75 |
})
|
76 |
+
logger.info(f"β
Detected {len(detections)} objects")
|
77 |
return detections
|
78 |
|
79 |
def draw(self, image: Image.Image, detections, alpha=0.5):
|