File size: 1,250 Bytes
3e6f99d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# knowledge_base.py
import os
import fitz  # PyMuPDF
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document

CHROMA_DIR = "chroma"
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"


def load_and_chunk_pdfs(folder_path):
    documents = []
    for filename in os.listdir(folder_path):
        if filename.endswith(".pdf"):
            path = os.path.join(folder_path, filename)
            doc = fitz.open(path)
            text = "\n".join(page.get_text() for page in doc)
            documents.append(Document(page_content=text, metadata={"source": filename}))

    splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    chunks = splitter.split_documents(documents)
    return chunks


def create_vectorstore(chunks):
    embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
    db = Chroma.from_documents(chunks, embeddings, persist_directory=CHROMA_DIR)
    db.persist()
    return db


def load_vectorstore():
    embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
    return Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)