eat2fit / knowledge_base.py
DurgaDeepak's picture
Update knowledge_base.py
174863b verified
import os
import fitz # PyMuPDF
import requests
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
CHROMA_DIR = os.path.abspath("chroma")
print("πŸ“‚ Loading vectorstore from:", CHROMA_DIR)
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
# Set this to your actual file on HF
HF_FILE_URL = "https://huggingface.co/spaces/DurgaDeepak/eat2fit/resolve/main/meal_plans/Lafayette%2C%20Natasha%20-%20Fit%20By%20Tasha%20High%20Protein%20Recipes%20_%2052%20High%20Protein%20Clean%20Recipes%20%26%20Meal%20Plan%20(2021).pdf"
def ensure_pdf_downloaded(local_path: str, url: str):
if not os.path.exists(local_path):
print(f"Downloading large PDF from: {url}")
response = requests.get(url)
if response.status_code == 200:
with open(local_path, "wb") as f:
f.write(response.content)
print("PDF downloaded successfully.")
else:
raise RuntimeError(f"Failed to download PDF: {response.status_code}")
def load_and_chunk_pdfs(folder_path):
documents = []
for filename in os.listdir(folder_path):
if filename.endswith(".pdf"):
path = os.path.join(folder_path, filename)
# Try downloading the file if it's missing or an LFS pointer
if os.path.getsize(path) < 1000: # LFS pointer files are tiny
ensure_pdf_downloaded(path, HF_FILE_URL)
doc = fitz.open(path)
text = "\n".join(page.get_text() for page in doc if page.get_text())
documents.append(Document(page_content=text, metadata={"source": filename}))
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = splitter.split_documents(documents)
return chunks
def create_vectorstore(chunks):
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
db = Chroma.from_documents(chunks, embeddings, persist_directory=CHROMA_DIR)
return db
def load_vectorstore():
print("πŸ“‚ Loading from:", CHROMA_DIR)
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
db = Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)
# Debug block
try:
docs = db.get()
print(f"βœ… Loaded vectorstore with {len(docs['documents'])} docs")
print(f"🧾 First doc snippet: {docs['documents'][0][:100]}...")
except Exception as e:
print(f"❌ Vectorstore load error: {e}")
return db