Spaces:
Sleeping
Sleeping
Create ingestion.py
Browse files- ingestion.py +41 -0
ingestion.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
from datasets import Dataset
|
4 |
+
from unstructured.partition.pdf import partition_pdf
|
5 |
+
from transformers import RagTokenizer
|
6 |
+
|
7 |
+
def ingest_and_push(dataset_name="username/mealplan-chunks"):
|
8 |
+
# Initialize tokenizer for token-aware splitting
|
9 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
10 |
+
texts, sources, pages = [], [], []
|
11 |
+
|
12 |
+
for pdf_path in glob.glob("pdfs/*.pdf"):
|
13 |
+
book = os.path.basename(pdf_path)
|
14 |
+
pages_data = partition_pdf(filename=pdf_path)
|
15 |
+
for page_num, page in enumerate(pages_data, start=1):
|
16 |
+
# Encode page text into token windows
|
17 |
+
enc = tokenizer(
|
18 |
+
page.text,
|
19 |
+
max_length=800,
|
20 |
+
truncation=True,
|
21 |
+
return_overflowing_tokens=True,
|
22 |
+
stride=50,
|
23 |
+
return_tensors="pt"
|
24 |
+
)
|
25 |
+
# Decode each token window back to text chunk
|
26 |
+
for token_ids in enc["input_ids"]:
|
27 |
+
chunk = tokenizer.decode(token_ids, skip_special_tokens=True)
|
28 |
+
texts.append(chunk)
|
29 |
+
sources.append(book)
|
30 |
+
pages.append(page_num)
|
31 |
+
|
32 |
+
# Build HF Dataset
|
33 |
+
ds = Dataset.from_dict({
|
34 |
+
"text": texts,
|
35 |
+
"source": sources,
|
36 |
+
"page": pages
|
37 |
+
})
|
38 |
+
ds.push_to_hub(dataset_name, token=True)
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
ingest_and_push()
|