# app.py import gradio as gr import spaces from chatbot_logic import get_bot_response from knowledge_base import load_and_chunk_pdfs, create_vectorstore import os # if not os.path.exists("chroma/index"): # print("Vectorstore missing or empty — running ingestion.") # chunks = load_and_chunk_pdfs("meal_plans") # create_vectorstore(chunks) # === User Preference State === user_preferences = { "diet": None, "goal": None, "allergies": None, } # === GPU Eligibility Decorator === @spaces.GPU def dummy_gpu_task(): return "Triggered GPU on startup." def set_preferences(diet, goal, allergies): user_preferences["diet"] = diet user_preferences["goal"] = goal user_preferences["allergies"] = allergies return "Preferences updated. You can start chatting now!" def chat_interface(user_input, history): try: response = get_bot_response(user_input) return response except Exception as e: return f"❌ Failed to process: {str(e)}" with gr.Blocks(title="AI Meal Plan Assistant") as demo: gr.Markdown(""" # 🍽️ Smart Meal Plan Chatbot Ask me anything about meal plans, nutrition, or recipes from the PDFs! """) with gr.Accordion("Set Your Preferences (Optional)", open=True): with gr.Row(): diet = gr.Radio(label="Diet Type", choices=["None", "Vegan", "Vegetarian", "Keto", "Low-Carb"], value="None") goal = gr.Radio(label="Goal", choices=["None", "Weight Loss", "Muscle Gain", "Diabetic Friendly"], value="None") allergies = gr.Textbox(label="Allergies (comma-separated)", placeholder="e.g., peanuts, gluten") update_btn = gr.Button("Update Preferences") output = gr.Textbox(label="Status") update_btn.click(fn=set_preferences, inputs=[diet, goal, allergies], outputs=output) chatbot = gr.ChatInterface(chat_interface, title="Meal Planner Chatbot") if __name__ == "__main__": demo.launch()