File size: 6,181 Bytes
96bae15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# app.py
import os
import re
import io
import torch
from typing import List, Optional

from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from PIL import Image, ImageEnhance, ImageOps
import torchvision.transforms as T

import gradio as gr
from fastapi import Request
from starlette.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware

# ========== LOAD MODELS (once) ==========
print("Loading VinTern model...")
vintern_model = AutoModel.from_pretrained(
    "5CD-AI/Vintern-1B-v3_5",
    trust_remote_code=True,
    torch_dtype="auto",
    device_map="auto",
    low_cpu_mem_usage=True
).eval()

vintern_tokenizer = AutoTokenizer.from_pretrained(
    "5CD-AI/Vintern-1B-v3_5",
    trust_remote_code=True
)
print("VinTern loaded!")

print("Loading PhoBERT model...")
phobert_path = "DuyKien016/phobert-scam-detector"
phobert_tokenizer = AutoTokenizer.from_pretrained(phobert_path, use_fast=False)
phobert_model = AutoModelForSequenceClassification.from_pretrained(phobert_path).eval()
phobert_model = phobert_model.to("cuda" if torch.cuda.is_available() else "cpu")
print("PhoBERT loaded!")


# ========== UTILS ==========
def process_image_pil(pil_img: Image.Image):
    img = pil_img.convert("RGB")
    img = ImageEnhance.Contrast(img).enhance(1.8)
    img = ImageEnhance.Sharpness(img).enhance(1.3)
    max_size = (448, 448)
    img.thumbnail(max_size, Image.Resampling.LANCZOS)
    img = ImageOps.pad(img, max_size, color=(245, 245, 245))
    transform = T.Compose([
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    pixel_values = transform(img).unsqueeze(0).to(vintern_model.device)
    return pixel_values


def extract_messages(pixel_values) -> List[str]:
    prompt = """<image>
Đọc từng tin nhắn trong ảnh và xuất ra định dạng:

Tin nhắn 1: [nội dung]
Tin nhắn 2: [nội dung]
Tin nhắn 3: [nội dung]

Quy tắc:
- Mỗi ô chat = 1 tin nhắn
- Chỉ lấy nội dung văn bản
- Bỏ thời gian, tên người, emoji
- Đọc từ trên xuống dưới

Bắt đầu:"""
    response, *_ = vintern_model.chat(
        tokenizer=vintern_tokenizer,
        pixel_values=pixel_values,
        question=prompt,
        generation_config=dict(max_new_tokens=1024, do_sample=False, num_beams=1, early_stopping=True),
        history=None,
        return_history=True
    )
    messages = re.findall(r"Tin nhắn \d+: (.+?)(?=\nTin nhắn|\Z)", response, re.S)

    def quick_clean(msg):
        msg = re.sub(r"\s+", " ", msg.strip())
        msg = re.sub(r'^\d+[\.\)\-\s]+', '', msg)
        return msg.strip()

    return [quick_clean(msg) for msg in messages if msg.strip()]


def predict_phobert(texts: List[str]):
    results = []
    for text in texts:
        encoded = phobert_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256)
        encoded = {k: v.to(phobert_model.device) for k, v in encoded.items()}
        with torch.no_grad():
            logits = phobert_model(**encoded).logits
            probs = torch.softmax(logits, dim=1).squeeze()
            label = torch.argmax(probs).item()
        results.append({
            "text": text,
            "prediction": "LỪA ĐẢO" if label == 1 else "BÌNH THƯỜNG",
            "confidence": f"{probs[label]*100:.2f}%"
        })
    return results


# ========== CORE HANDLER ==========
def handle_inference(text: Optional[str], pil_image: Optional[Image.Image]):
    if (not text) and (pil_image is None):
        return {"error": "No valid input provided"}, 400

    if pil_image is not None:
        pixel_values = process_image_pil(pil_image)
        messages = extract_messages(pixel_values)
        phobert_results = predict_phobert(messages)
        return {"messages": phobert_results}, 200

    # text only
    texts = [text] if isinstance(text, str) else text
    if isinstance(texts, list):
        phobert_results = predict_phobert(texts)
        return {"messages": phobert_results}, 200

    return {"error": "Invalid input format"}, 400


# ========== GRADIO APP (UI + API) ==========
demo = gr.Blocks()

with demo:
    gr.Markdown("## dunkingscam backend (HF Space) — test nhanh")
    with gr.Row():
        txt = gr.Textbox(label="Text (tùy chọn)")
        img = gr.Image(label="Ảnh chat (tùy chọn)", type="pil")
    out = gr.JSON(label="Kết quả")

    def ui_process(text, image):
        data, _ = handle_inference(text, image)
        return data

    btn = gr.Button("Process")
    btn.click(fn=ui_process, inputs=[txt, img], outputs=out)

# Lấy FastAPI app bên trong Gradio để thêm CORS + custom route
app = demo.server_app
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # cần mở cho Replit
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Custom REST endpoint /process (FormData hoặc JSON)
@demo.add_server_route("/process", methods=["POST"])
async def process_endpoint(request: Request):
    try:
        ct = request.headers.get("content-type", "")
        if "multipart/form-data" in ct:
            form = await request.form()
            text = form.get("text")
            file = form.get("image")  # UploadFile hoặc None
            pil_image = None
            if file is not None:
                # đọc bytes -> PIL
                content = await file.read()
                pil_image = Image.open(io.BytesIO(content))
            data, status = handle_inference(text, pil_image)
        elif "application/json" in ct:
            payload = await request.json()
            text = payload.get("text")
            data, status = handle_inference(text, None)
        else:
            data, status = {"error": "Unsupported Content-Type"}, 400

        return JSONResponse(
            content=data,
            status_code=status,
            headers={"Access-Control-Allow-Origin": "*"}
        )
    except Exception as e:
        return JSONResponse(
            content={"error": f"Server error: {str(e)}"},
            status_code=500,
            headers={"Access-Control-Allow-Origin": "*"}
        )