VishnuEcoClim commited on
Commit
5974209
·
1 Parent(s): 97ea680

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +2 -23
utils.py CHANGED
@@ -1,24 +1,3 @@
1
- from tensorflow.keras.models import Sequential
2
- from tensorflow.keras.layers import Conv2D, Flatten, MaxPooling2D, Dense, Dropout, SpatialDropout2D
3
- from tensorflow.keras.losses import sparse_categorical_crossentropy, binary_crossentropy
4
- from tensorflow.keras.optimizers import Adam
5
- from tensorflow.keras.preprocessing.image import ImageDataGenerator
6
- import numpy as np
7
- from PIL import Image
8
-
9
- def gen_labels():
10
- train = 'Dataset/Train'
11
- train_generator = ImageDataGenerator(rescale = 1/255)
12
-
13
- train_generator = train_generator.flow_from_directory(train,
14
- target_size = (300,300),
15
- batch_size = 32,
16
- class_mode = 'sparse')
17
- labels = (train_generator.class_indices)
18
- labels = dict((v,k) for k,v in labels.items())
19
-
20
- return labels
21
-
22
  def preprocess(image):
23
  image = np.array(image.resize((256, 256), Image.LANCZOS))
24
  image = np.array(image, dtype='uint8')
@@ -30,7 +9,7 @@ def model_arc():
30
  model = Sequential()
31
 
32
  # Convolution blocks
33
- model.add(Conv2D(32, kernel_size=(3,3), padding='same', input_shape=(300,300,3), activation='relu'))
34
  model.add(MaxPooling2D(pool_size=2))
35
 
36
  model.add(Conv2D(64, kernel_size=(3,3), padding='same', activation='relu'))
@@ -49,4 +28,4 @@ def model_arc():
49
  model.add(Dropout(0.2))
50
  model.add(Dense(6, activation='softmax'))
51
 
52
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  def preprocess(image):
2
  image = np.array(image.resize((256, 256), Image.LANCZOS))
3
  image = np.array(image, dtype='uint8')
 
9
  model = Sequential()
10
 
11
  # Convolution blocks
12
+ model.add(Conv2D(32, kernel_size=(3,3), padding='same', input_shape=(256, 256, 3), activation='relu'))
13
  model.add(MaxPooling2D(pool_size=2))
14
 
15
  model.add(Conv2D(64, kernel_size=(3,3), padding='same', activation='relu'))
 
28
  model.add(Dropout(0.2))
29
  model.add(Dense(6, activation='softmax'))
30
 
31
+ return model