Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
import requests
|
5 |
+
from moviepy.editor import VideoFileClip
|
6 |
+
import random
|
7 |
+
import json
|
8 |
+
|
9 |
+
# --- Lightweight AccentAnalyzer class ---
|
10 |
+
|
11 |
+
class AccentAnalyzer:
|
12 |
+
def __init__(self):
|
13 |
+
self.accent_profiles = {
|
14 |
+
"American": {
|
15 |
+
"features": ["rhotic", "flapped_t", "cot_caught_merger"],
|
16 |
+
"description": "American English accent with rhotic pronunciation and typical North American features."
|
17 |
+
},
|
18 |
+
"British": {
|
19 |
+
"features": ["non_rhotic", "t_glottalization", "trap_bath_split"],
|
20 |
+
"description": "British English accent with non-rhotic pronunciation and typical UK features."
|
21 |
+
},
|
22 |
+
"Australian": {
|
23 |
+
"features": ["non_rhotic", "flat_a", "high_rising_terminal"],
|
24 |
+
"description": "Australian English accent with distinctive vowel sounds and intonation patterns."
|
25 |
+
},
|
26 |
+
"Canadian": {
|
27 |
+
"features": ["rhotic", "canadian_raising", "eh_tag"],
|
28 |
+
"description": "Canadian English accent with features of both American and British English."
|
29 |
+
},
|
30 |
+
"Indian": {
|
31 |
+
"features": ["retroflex_consonants", "monophthongization", "syllable_timing"],
|
32 |
+
"description": "Indian English accent influenced by native Indian languages."
|
33 |
+
},
|
34 |
+
"Irish": {
|
35 |
+
"features": ["dental_fricatives", "alveolar_l", "soft_consonants"],
|
36 |
+
"description": "Irish English accent with distinctive rhythm and consonant patterns."
|
37 |
+
},
|
38 |
+
"Scottish": {
|
39 |
+
"features": ["rolled_r", "monophthongs", "glottal_stops"],
|
40 |
+
"description": "Scottish English accent with strong consonants and distinctive vowel patterns."
|
41 |
+
},
|
42 |
+
"South African": {
|
43 |
+
"features": ["non_rhotic", "kit_split", "kw_hw_distinction"],
|
44 |
+
"description": "South African English accent with influences from Afrikaans and other local languages."
|
45 |
+
}
|
46 |
+
}
|
47 |
+
self._load_or_create_accent_data()
|
48 |
+
|
49 |
+
def _load_or_create_accent_data(self):
|
50 |
+
# For demo: just create simulated data in-memory
|
51 |
+
self.accent_data = self._create_simulated_accent_data()
|
52 |
+
|
53 |
+
def _create_simulated_accent_data(self):
|
54 |
+
accent_data = {}
|
55 |
+
for accent, profile in self.accent_profiles.items():
|
56 |
+
accent_data[accent] = {
|
57 |
+
"primary_features": profile["features"],
|
58 |
+
"feature_probabilities": {}
|
59 |
+
}
|
60 |
+
for feature in profile["features"]:
|
61 |
+
accent_data[accent]["feature_probabilities"][feature] = random.uniform(0.7, 0.9)
|
62 |
+
all_features = set()
|
63 |
+
for a, p in self.accent_profiles.items():
|
64 |
+
all_features.update(p["features"])
|
65 |
+
for feature in all_features:
|
66 |
+
if feature not in profile["features"]:
|
67 |
+
accent_data[accent]["feature_probabilities"][feature] = random.uniform(0.1, 0.4)
|
68 |
+
return accent_data
|
69 |
+
|
70 |
+
def _extract_features(self, audio_path):
|
71 |
+
# This is a simulated feature extraction for the demo.
|
72 |
+
# In a real application, this would use SpeechBrain or similar ML models
|
73 |
+
# to extract actual phonetic features from the audio.
|
74 |
+
all_features = set()
|
75 |
+
for accent, profile in self.accent_profiles.items():
|
76 |
+
all_features.update(profile["features"])
|
77 |
+
detected_features = {}
|
78 |
+
for feature in all_features:
|
79 |
+
# Simulate detection of features with varying probabilities
|
80 |
+
detected_features[feature] = random.uniform(0.1, 0.9)
|
81 |
+
return detected_features
|
82 |
+
|
83 |
+
def _calculate_accent_scores(self, detected_features):
|
84 |
+
accent_scores = {}
|
85 |
+
for accent, data in self.accent_data.items():
|
86 |
+
score = 0
|
87 |
+
total_weight = 0
|
88 |
+
for feature, probability in detected_features.items():
|
89 |
+
expected_prob = data["feature_probabilities"].get(feature, 0.1)
|
90 |
+
weight = 3.0 if feature in data["primary_features"] else 1.0 # Give more weight to primary features
|
91 |
+
feature_score = probability * expected_prob * weight
|
92 |
+
score += feature_score
|
93 |
+
total_weight += weight
|
94 |
+
if total_weight > 0:
|
95 |
+
accent_scores[accent] = (score / total_weight) * 100
|
96 |
+
else:
|
97 |
+
accent_scores[accent] = 0
|
98 |
+
return accent_scores
|
99 |
+
|
100 |
+
def _generate_explanation(self, accent_type, confidence):
|
101 |
+
if confidence >= 70:
|
102 |
+
confidence_level = "high confidence"
|
103 |
+
certainty = "is very clear"
|
104 |
+
elif confidence >= 50:
|
105 |
+
confidence_level = "moderate confidence"
|
106 |
+
certainty = "is present"
|
107 |
+
else:
|
108 |
+
confidence_level = "low confidence"
|
109 |
+
certainty = "may be present"
|
110 |
+
description = self.accent_profiles[accent_type]["description"]
|
111 |
+
second_accent = self._get_second_most_likely_accent(accent_type)
|
112 |
+
explanation = f"The speaker has a {confidence_level} {accent_type} English accent. The {accent_type} accent {certainty}, with features of both {accent_type} and {second_accent} English present."
|
113 |
+
return explanation
|
114 |
+
|
115 |
+
def _get_second_most_likely_accent(self, primary_accent):
|
116 |
+
# Simple rule-based selection for demo purposes
|
117 |
+
accent_similarities = {
|
118 |
+
"American": ["Canadian", "British"],
|
119 |
+
"British": ["Australian", "Irish"],
|
120 |
+
"Australian": ["British", "South African"],
|
121 |
+
"Canadian": ["American", "British"],
|
122 |
+
"Indian": ["British", "South African"],
|
123 |
+
"Irish": ["Scottish", "British"],
|
124 |
+
"Scottish": ["Irish", "British"],
|
125 |
+
"South African": ["Australian", "British"]
|
126 |
+
}
|
127 |
+
# Pick a random similar accent from the predefined list
|
128 |
+
return random.choice(accent_similarities[primary_accent])
|
129 |
+
|
130 |
+
def analyze_accent(self, audio_path):
|
131 |
+
"""
|
132 |
+
Analyzes the accent from an audio file.
|
133 |
+
In this demo, it simulates feature extraction and accent scoring.
|
134 |
+
"""
|
135 |
+
detected_features = self._extract_features(audio_path)
|
136 |
+
accent_scores = self._calculate_accent_scores(detected_features)
|
137 |
+
|
138 |
+
# Find the accent with the highest score
|
139 |
+
accent_type = max(accent_scores, key=accent_scores.get)
|
140 |
+
confidence = accent_scores[accent_type]
|
141 |
+
|
142 |
+
explanation = self._generate_explanation(accent_type, confidence)
|
143 |
+
|
144 |
+
return {
|
145 |
+
"accent_type": accent_type,
|
146 |
+
"confidence": confidence,
|
147 |
+
"explanation": explanation,
|
148 |
+
"all_scores": accent_scores # Useful for debugging or more detailed display
|
149 |
+
}
|
150 |
+
|
151 |
+
# --- Utility: Download video and extract audio ---
|
152 |
+
|
153 |
+
def download_and_extract_audio(url):
|
154 |
+
"""
|
155 |
+
Downloads a video from a URL and extracts its audio to a WAV file.
|
156 |
+
Handles both direct MP4 links and YouTube URLs (using pytubefix).
|
157 |
+
"""
|
158 |
+
temp_dir = tempfile.mkdtemp()
|
159 |
+
video_path = os.path.join(temp_dir, "video.mp4")
|
160 |
+
audio_path = os.path.join(temp_dir, "audio.wav")
|
161 |
+
|
162 |
+
try:
|
163 |
+
# Download video
|
164 |
+
# Check for YouTube URL patterns (simplified for demo)
|
165 |
+
if "youtube.com/" in url or "youtu.be/" in url:
|
166 |
+
try:
|
167 |
+
from pytubefix import YouTube
|
168 |
+
yt = YouTube(url)
|
169 |
+
# Try to get a progressive stream (video + audio)
|
170 |
+
stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
|
171 |
+
if not stream:
|
172 |
+
# Fallback to separate audio stream if progressive not found
|
173 |
+
stream = yt.streams.filter(only_audio=True).first()
|
174 |
+
if not stream:
|
175 |
+
raise RuntimeError("No suitable video or audio stream found for YouTube URL.")
|
176 |
+
|
177 |
+
# Download the stream
|
178 |
+
stream.download(output_path=temp_dir, filename="video.mp4")
|
179 |
+
except ImportError:
|
180 |
+
raise ImportError("pytubefix is not installed. Please install it with 'pip install pytubefix'.")
|
181 |
+
except Exception as e:
|
182 |
+
# Catch specific YouTube errors, e.g., age restriction, unavailable
|
183 |
+
raise RuntimeError(f"Error downloading YouTube video: {e}. Try running locally or use a direct MP4 link.")
|
184 |
+
else:
|
185 |
+
# Direct MP4 download
|
186 |
+
response = requests.get(url, stream=True)
|
187 |
+
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
|
188 |
+
with open(video_path, "wb") as f:
|
189 |
+
for chunk in response.iter_content(chunk_size=8192):
|
190 |
+
f.write(chunk)
|
191 |
+
|
192 |
+
# Extract audio using moviepy
|
193 |
+
clip = VideoFileClip(video_path)
|
194 |
+
clip.audio.write_audiofile(audio_path, logger=None) # logger=None suppresses moviepy output
|
195 |
+
clip.close()
|
196 |
+
|
197 |
+
return audio_path
|
198 |
+
finally:
|
199 |
+
# Clean up the video file immediately after audio extraction
|
200 |
+
if os.path.exists(video_path):
|
201 |
+
os.remove(video_path)
|
202 |
+
# The temp_dir itself will be handled by Gradio's internal tempfile management,
|
203 |
+
# or you can add os.rmdir(temp_dir) if you manage temp_dir manually.
|
204 |
+
|
205 |
+
# --- Gradio interface ---
|
206 |
+
|
207 |
+
def analyze_from_url(url):
|
208 |
+
"""
|
209 |
+
Gradio interface function to analyze accent from a given video URL.
|
210 |
+
"""
|
211 |
+
if not url:
|
212 |
+
return "Please enter a video URL.", "N/A", "No URL provided."
|
213 |
+
|
214 |
+
try:
|
215 |
+
audio_path = download_and_extract_audio(url)
|
216 |
+
analyzer = AccentAnalyzer()
|
217 |
+
results = analyzer.analyze_accent(audio_path)
|
218 |
+
|
219 |
+
# Clean up the temporary audio file after analysis
|
220 |
+
if os.path.exists(audio_path):
|
221 |
+
os.remove(audio_path)
|
222 |
+
|
223 |
+
return (
|
224 |
+
results["accent_type"],
|
225 |
+
f"{results['confidence']:.1f}%",
|
226 |
+
results["explanation"]
|
227 |
+
)
|
228 |
+
except Exception as e:
|
229 |
+
# Catch and display any errors during the process
|
230 |
+
return (
|
231 |
+
"Error",
|
232 |
+
"0%",
|
233 |
+
f"Error processing video/audio: {e}. Please ensure the URL is valid and publicly accessible."
|
234 |
+
)
|
235 |
+
|
236 |
+
# Create the Gradio interface
|
237 |
+
iface = gr.Interface(
|
238 |
+
fn=analyze_from_url,
|
239 |
+
inputs=gr.Textbox(
|
240 |
+
label="Enter Public Video URL (YouTube or direct MP4)",
|
241 |
+
placeholder="e.g., https://www.youtube.com/watch?v=dQw4w9WgXcQ or https://samplelib.com/lib/preview/mp4/sample-5s.mp4"
|
242 |
+
),
|
243 |
+
outputs=[
|
244 |
+
gr.Textbox(label="Detected Accent"),
|
245 |
+
gr.Textbox(label="Confidence Score"),
|
246 |
+
gr.Textbox(label="Explanation")
|
247 |
+
],
|
248 |
+
title="English Accent Analyzer (Rule-Based Demo)",
|
249 |
+
description="""
|
250 |
+
Paste a public video URL (YouTube or direct MP4) to detect the English accent and confidence score.
|
251 |
+
|
252 |
+
**Important Notes:**
|
253 |
+
* This is a **DEMO** using a simulated accent analysis model, not a real machine learning model.
|
254 |
+
* It uses `pytubefix` for YouTube links and `requests`/`moviepy` for direct MP4s.
|
255 |
+
* YouTube video extraction can sometimes be temperamental due to YouTube's changing policies or region restrictions. Direct MP4 links are generally more reliable.
|
256 |
+
* **Sample MP4 URL for testing:** `https://samplelib.com/lib/preview/mp4/sample-5s.mp4`
|
257 |
+
"""
|
258 |
+
)
|
259 |
+
|
260 |
+
# Launch the Gradio interface
|
261 |
+
# `share=False` for local deployment (no public link generated)
|
262 |
+
# For Hugging Face Spaces, you typically don't need `iface.launch()` as the platform handles it.
|
263 |
+
# However, if you're running it locally to test before deployment, keep this block.
|
264 |
+
if __name__ == "__main__":
|
265 |
+
iface.launch(debug=True, share=False)
|