EgoHackZero
commited on
Commit
·
6225fda
1
Parent(s):
fa1476f
try to add segmentation step
Browse files
app.py
CHANGED
@@ -1,64 +1,92 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
import numpy as np
|
|
|
4 |
import cv2
|
5 |
from PIL import Image
|
|
|
|
|
6 |
|
|
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
8 |
|
9 |
-
#
|
|
|
10 |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
|
11 |
-
midas.to(device)
|
12 |
-
midas.eval()
|
13 |
-
|
14 |
-
# Загрузка трансформаций
|
15 |
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
16 |
transform = midas_transforms.dpt_transform
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
else:
|
35 |
-
input_batch = input_tensor # Уже batch
|
36 |
|
37 |
-
#
|
38 |
with torch.no_grad():
|
39 |
prediction = midas(input_batch)
|
40 |
prediction = torch.nn.functional.interpolate(
|
41 |
prediction.unsqueeze(1),
|
42 |
-
size=
|
43 |
mode="bicubic",
|
44 |
-
align_corners=False
|
45 |
).squeeze()
|
46 |
|
47 |
-
#
|
48 |
depth_map = prediction.cpu().numpy()
|
49 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
50 |
depth_map = (depth_map * 255).astype(np.uint8)
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
# Gradio интерфейс
|
56 |
iface = gr.Interface(
|
57 |
-
fn=
|
58 |
-
inputs=gr.Image(type="pil"),
|
59 |
-
outputs=gr.Image(type="pil"),
|
60 |
-
title="
|
61 |
-
description="
|
62 |
)
|
63 |
|
64 |
if __name__ == "__main__":
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
import torch
|
3 |
import cv2
|
4 |
from PIL import Image
|
5 |
+
from transformers import pipeline
|
6 |
+
import gradio as gr
|
7 |
|
8 |
+
# ===== Device Setup =====
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
device_index = 0 if torch.cuda.is_available() else -1
|
11 |
|
12 |
+
# ===== MiDaS Depth Estimation Setup =====
|
13 |
+
# Load MiDaS model and transforms
|
14 |
midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
|
15 |
+
midas.to(device).eval()
|
|
|
|
|
|
|
16 |
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
17 |
transform = midas_transforms.dpt_transform
|
18 |
|
19 |
+
# ===== Segmentation Setup =====
|
20 |
+
segmenter = pipeline(
|
21 |
+
"image-segmentation",
|
22 |
+
model="nvidia/segformer-b0-finetuned-ade-512-512",
|
23 |
+
device=device_index,
|
24 |
+
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32
|
25 |
+
)
|
26 |
|
27 |
+
# ===== Utility Functions =====
|
28 |
+
def resize_image(img: Image.Image, max_size: int = 512) -> Image.Image:
|
29 |
+
width, height = img.size
|
30 |
+
if max(width, height) > max_size:
|
31 |
+
ratio = max_size / max(width, height)
|
32 |
+
new_size = (int(width * ratio), int(height * ratio))
|
33 |
+
return img.resize(new_size, Image.LANCZOS)
|
34 |
+
return img
|
35 |
|
36 |
+
# ===== Depth Prediction =====
|
37 |
+
def predict_depth(image: Image.Image) -> Image.Image:
|
38 |
+
# Ensure input is PIL Image
|
39 |
+
img = image.convert('RGB') if not isinstance(image, Image.Image) else image
|
40 |
+
img_np = np.array(img)
|
41 |
|
42 |
+
# Convert to the format expected by MiDaS
|
43 |
+
input_tensor = transform(img_np).to(device)
|
44 |
+
input_batch = input_tensor.unsqueeze(0) if input_tensor.ndim == 3 else input_tensor
|
|
|
|
|
45 |
|
46 |
+
# Predict depth
|
47 |
with torch.no_grad():
|
48 |
prediction = midas(input_batch)
|
49 |
prediction = torch.nn.functional.interpolate(
|
50 |
prediction.unsqueeze(1),
|
51 |
+
size=img_np.shape[:2],
|
52 |
mode="bicubic",
|
53 |
+
align_corners=False
|
54 |
).squeeze()
|
55 |
|
56 |
+
# Normalize to 0-255
|
57 |
depth_map = prediction.cpu().numpy()
|
58 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
59 |
depth_map = (depth_map * 255).astype(np.uint8)
|
60 |
+
return Image.fromarray(depth_map)
|
61 |
+
|
62 |
+
# ===== Segmentation =====
|
63 |
+
def segment_image(img: Image.Image) -> Image.Image:
|
64 |
+
img = img.convert('RGB')
|
65 |
+
img_resized = resize_image(img)
|
66 |
+
results = segmenter(img_resized)
|
67 |
+
|
68 |
+
overlay = np.array(img_resized, dtype=np.uint8)
|
69 |
+
for res in results:
|
70 |
+
mask = np.array(res["mask"], dtype=bool)
|
71 |
+
color = np.random.randint(50, 255, 3, dtype=np.uint8)
|
72 |
+
overlay[mask] = (overlay[mask] * 0.6 + color * 0.4).astype(np.uint8)
|
73 |
+
|
74 |
+
return Image.fromarray(overlay)
|
75 |
|
76 |
+
# ===== Gradio App =====
|
77 |
+
def predict_fn(input_img: Image.Image) -> Image.Image:
|
78 |
+
# 1. Compute depth map
|
79 |
+
depth_img = predict_depth(input_img)
|
80 |
+
# 2. Segment the depth map
|
81 |
+
seg_img = segment_image(depth_img)
|
82 |
+
return seg_img
|
83 |
|
|
|
84 |
iface = gr.Interface(
|
85 |
+
fn=predict_fn,
|
86 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
87 |
+
outputs=gr.Image(type="pil", label="Segmented Depth Overlay"),
|
88 |
+
title="Depth-then-Segmentation Pipeline",
|
89 |
+
description="Upload an image. First computes a depth map via MiDaS, then applies SegFormer segmentation on the depth map."
|
90 |
)
|
91 |
|
92 |
if __name__ == "__main__":
|