|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from typing import Tuple, Optional |
|
|
|
from retriever import EnAgent as RetrieverAgent |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
class EnAgent: |
|
def __init__(self): |
|
self.retriever_agent = RetrieverAgent() |
|
|
|
def __call__(self, question: str) -> str: |
|
return self.retriever_agent.answer_question(question) |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None) -> Tuple[str, Optional[pd.DataFrame]]: |
|
if not profile: |
|
return "❌ Please Login to Hugging Face with the button.", None |
|
|
|
username = profile.username |
|
space_id = os.getenv("SPACE_ID") |
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
try: |
|
agent = EnAgent() |
|
except Exception as e: |
|
return f"❌ Error initializing agent: {str(e)}", None |
|
|
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
return "❌ Fetched questions list is empty or invalid format.", None |
|
except requests.exceptions.RequestException as e: |
|
return f"❌ Error fetching questions: {str(e)}", None |
|
except Exception as e: |
|
return f"❌ Unexpected error fetching questions: {str(e)}", None |
|
|
|
results_log = [] |
|
answers_payload = [] |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") or item.get("id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": f"AGENT ERROR: {str(e)}" |
|
}) |
|
|
|
if not answers_payload: |
|
return "⚠️ Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", |
|
"answers": answers_payload |
|
} |
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"✅ Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
return final_status, pd.DataFrame(results_log) |
|
except requests.exceptions.RequestException as e: |
|
return f"❌ Submission Failed: {str(e)}", pd.DataFrame(results_log) |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# En Agent") |
|
gr.Markdown(""" |
|
**Instructions:** |
|
1. Log in to Hugging Face below. |
|
2. Click the button to run your agent on questions and submit answers. |
|
""") |
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(debug=True, share=False) |
|
|
|
|
|
|