HFG-gr / app.py
Elret's picture
Update app.py
c73f4e1 verified
import os
import gradio as gr
import requests
import pandas as pd
from typing import Tuple, Optional
from retriever import EnAgent as RetrieverAgent
# Константы
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class EnAgent:
def __init__(self):
self.retriever_agent = RetrieverAgent()
def __call__(self, question: str) -> str:
return self.retriever_agent.answer_question(question)
def run_and_submit_all(profile: gr.OAuthProfile | None) -> Tuple[str, Optional[pd.DataFrame]]:
if not profile:
return "❌ Please Login to Hugging Face with the button.", None
username = profile.username
space_id = os.getenv("SPACE_ID")
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = EnAgent()
except Exception as e:
return f"❌ Error initializing agent: {str(e)}", None
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "❌ Fetched questions list is empty or invalid format.", None
except requests.exceptions.RequestException as e:
return f"❌ Error fetching questions: {str(e)}", None
except Exception as e:
return f"❌ Unexpected error fetching questions: {str(e)}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id") or item.get("id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {str(e)}"
})
if not answers_payload:
return "⚠️ Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"✅ Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except requests.exceptions.RequestException as e:
return f"❌ Submission Failed: {str(e)}", pd.DataFrame(results_log)
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# En Agent")
gr.Markdown("""
**Instructions:**
1. Log in to Hugging Face below.
2. Click the button to run your agent on questions and submit answers.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False)