HFG-gr / retriever.py
Elret's picture
Update retriever.py
1140ecf verified
import os
import logging
import requests
import subprocess
import time
import re
from functools import lru_cache
from typing import List, Dict, Optional, Tuple
import spacy
from openai import OpenAI
import gradio as gr
from tool import Browser, SearchInformationTool
# Загружаем spaCy
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def initialize_openai_client():
try:
return OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {str(e)}")
raise
class EnAgent:
def __init__(self, api_url: str = DEFAULT_API_URL):
self.api_url = api_url
self.openai_client = initialize_openai_client()
self.browser = Browser()
self.search_tool = SearchInformationTool(browser=self.browser)
logger.info("EnAgent initialized.")
def fetch_questions(self) -> Optional[List[Dict]]:
try:
response = requests.get(f"{self.api_url}/questions", timeout=15)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error fetching questions: {e}")
return None
def submit_answers(self, answers_payload: List[Dict], username: str, agent_code: str) -> Optional[Dict]:
try:
response = requests.post(
f"{self.api_url}/submit",
json={"username": username, "agent_code": agent_code, "answers": answers_payload},
timeout=60
)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error submitting answers: {e}")
return None
def answer_question_with_context(self, context: str) -> str:
full_prompt = f"""{context}
When answering, provide only the exact answer requested.
Do not include explanations, steps, justifications, or additional text.
"""
try:
answer = self.agent.run(full_prompt)
answer = self._clean_answer(answer)
if self.verbose:
print(f"Generated answer: {answer}")
return answer
except Exception as e:
error_msg = f"Error answering question: {e}"
if self.verbose:
print(error_msg)
return error_msg
def _clean_answer(self, answer: any) -> str:
"""
Clean up your response by removing common prefixes and formatting.
Args:
answer: The raw answer from the model
Returns:
The cleaned answer as a string
"""
if not isinstance(answer, str):
if isinstance(answer, float):
if answer.is_integer():
formatted_answer = str(int(answer))
return formatted_answer
elif isinstance(answer, int):
return str(answer)
else:
return str(answer)
answer = answer.strip()
prefixes_to_remove = [
"The answer is ",
"Answer: ",
"Final answer: ",
"The result is ",
"To answer this question: ",
"Based on the information provided, ",
"According to the information: ",
]
for prefix in prefixes_to_remove:
if answer.startswith(prefix):
answer = answer[len(prefix):].strip()
if (answer.startswith('"') and answer.endswith('"')) or (answer.startswith("'") and answer.endswith("'")):
answer = answer[1:-1].strip()
return answer
def analyze_question_intent(self, question: str) -> str:
doc = nlp(question.lower())
for token in doc:
if token.text in ["how", "many", "much", "number", "count"]:
return "count"
elif token.text in ["who", "name", "person"]:
return "name"
elif token.text in ["when", "date", "year"]:
return "date"
elif token.text in ["where", "place", "location"]:
return "location"
elif token.text in ["what", "which"]:
return "fact"
return "unknown"
def extract_number_between_years(self, text: str, start: int, end: int) -> Optional[int]:
year_matches = re.findall(r"\b(19|20)\d{2}\b", text)
years = [int(y) for y in year_matches if start <= int(y) <= end]
return len(set(years)) if years else None
def format_answer(self, question: str, answer: str, intent: str) -> str:
answer = answer.strip()
logger.info(f"Intent: {intent} | Raw answer: {answer}")
if intent == "count":
year_matches = re.findall(r"\b(19|20)\d{2}\b", question)
years = list(map(int, year_matches))
if len(years) >= 2:
start, end = sorted(years[:2])
number = self.extract_number_between_years(answer, start, end)
if number is not None:
logger.info(f"Extracted number from years: {number}")
return str(number)
album_match = re.search(r"(one|two|three|four|five|\d+)\s+(studio\s+)?albums?", answer.lower())
if album_match:
number_word = album_match.group(1)
number = self.convert_word_to_number(number_word) if number_word.isalpha() else int(number_word)
if number:
logger.info(f"Extracted number from album phrase: {number}")
return str (number)
numbers = re.findall(r"\d+", answer)
if numbers:
logger.info(f"Extracted fallback number: {numbers[0]}")
return numbers[0]
return answer
elif intent == "name":
doc = nlp(answer)
persons = [ent.text for ent in doc.ents if ent.label_ in ["PERSON", "ORG"]]
return persons[0] if persons else answer
elif intent == "date":
doc = nlp(answer)
for ent in doc.ents:
if ent.label_ == "DATE":
return ent.text
return answer
elif intent == "location":
doc = nlp(answer)
for ent in doc.ents:
if ent.label_ == "GPE":
return ent.text
return answer
elif intent == "fact":
return answer
return answer
def find_country_with_min_athletes(text: str) -> Optional[str]:
matches = re.findall(r"\b([A-Z][a-z]+(?: [A-Z][a-z]+)?)\s*\((\d+)\)", text)
if not matches:
return None
min_count = min(int(c) for _, c in matches)
filtered = [country for country, count in matches if int(count) == min_count]
return sorted(filtered)[0] if filtered else None
def extract_ioc_code(country_name: str, ioc_text: str) -> Optional[str]:
pattern = re.compile(rf"{re.escape(country_name)}\s*\((\w{{3}})\)", re.IGNORECASE)
match = pattern.search(ioc_text)
return match.group(1).upper() if match else None
def preprocess_question(self, question: str) -> str:
question = question.strip().lower()
question = re.sub(r"[^\w\s]", "", question)
question = re.sub(r"\s+", " ", question)
return question
def search_with_reference(self, query: str) -> str:
domains = []
query_lower = query.lower()
wikipedia_related_keywords = ["information", "article", "search", "learn", "facts", "data", "country", "athlete"]
if any(keyword in query_lower for keyword in wikipedia_related_keywords) or "wikipedia" in query_lower or "wikipedia.org" in query_lower:
domains.append("en.wikipedia.org")
if "wikipedia" in query_lower or "wikipedia.org" in query_lower:
domains.append("en.wikipedia.org")
if "baseball reference" in query_lower:
domains.append("www.baseball-reference.com")
if "imdb" in query_lower:
domains.append("www.imdb.com")
if domains:
domain_filters = " OR ".join([f"site:{domain}" for domain in domains])
query = f"{query} ({domain_filters})"
search_result = self.search_tool.forward(query)
if not search_result or "An error occurred" in search_result or "No results found" in search_result:
logger.warning("Search returned no usable results.")
return ""
return search_result[:1000]
@lru_cache(maxsize=128)
def answer_question(self, question: str) -> str:
logger.info(f"Answering question with reasoning: {question[:50]}...")
try:
source_text = self.search_with_reference(question)
intent = self.analyze_question_intent(question)
system_prompt = (
"You are a concise assistant. You do it step by step.To search for information, you can use Wikipedia and the sources of information specified in the question. You are only answering the question."
"When answering, provide only the exact answer requested."
"Do not include explanations, steps, justifications, or additional text."
"For example, if you are asked: What is the capital of France?, simply answer: Paris."
"For example, to answer four chairs, simply answer: 4"
)
content_block = f"Question: {question}"
if source_text:
content_block += f"\n\nSource:\n{source_text}"
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": content_block}
]
response = self.openai_client.chat.completions.create(
model="gpt-4o",
messages=messages,
temperature=0.3,
max_tokens=50
)
if response.choices:
raw = response.choices[0].message.content.strip()
match = re.search(r"(?i)answer\s*[:\\-]?\s*(.*)", raw)
final = match.group(1).strip() if match else raw
return self.format_answer(question, final, intent)
return "No answer."
except Exception as e:
logger.error(f"Error answering question: {e}")
return f"Error: {e}"
def process_questions(self, questions: List[str]) -> List[Dict]:
results = []
for question in questions:
time.sleep(1)
answer = self.answer_question(question)
results.append({"Question": question, "Answer": answer})
return results
def process_uploaded_file(self, file_path: str) -> List[str]:
try:
ext = os.path.splitext(file_path)[1].lower()
if ext == ".pdf":
return self.extract_questions_from_pdf(file_path)
elif ext == ".txt":
return self.extract_questions_from_txt(file_path)
elif ext == ".md":
return self.extract_questions_from_markdown(file_path)
elif ext in [".xls", ".xlsx"]:
return self.extract_questions_from_excel(file_path)
elif ext == ".csv":
return self.extract_questions_from_csv(file_path)
elif ext in [".mp4", ".avi", ".mov"]:
return self.extract_images_from_video(file_path)
else:
logger.error("Unsupported file format.")
return []
except Exception as e:
logger.error(f"Error processing file: {e}")
return []
def extract_questions_from_pdf(self, file_path: str) -> List[str]:
return ["Question from PDF"]
def extract_questions_from_txt(self, file_path: str) -> List[str]:
return ["Question from TXT"]
def extract_questions_from_markdown(self, file_path: str) -> List[str]:
return ["Question from Markdown"]
def extract_questions_from_excel(self, file_path: str) -> List[str]:
try:
import pandas as pd
df = pd.read_excel(file_path)
for col in df.columns:
if df[col].dtype == object:
return df[col].dropna().astype(str).tolist()
return []
except Exception as e:
logger.error(f"Error extracting from Excel: {e}")
return []
def extract_questions_from_csv(self, file_path: str) -> List[str]:
return ["Question from CSV"]
def extract_images_from_video(self, file_path: str) -> List[str]:
return ["Frame 1", "Frame 2"]
def run_and_submit_all(profile: Optional[gr.OAuthProfile]) -> Tuple[str, Optional[List[Dict]]]:
try:
if profile is None or not hasattr(profile, "username"):
return "❌ Please log in to Hugging Face.", None
username = profile.username
space_id = os.getenv("SPACE_ID")
if not space_id:
return "❌ SPACE_ID environment variable not set.", None
agent = EnAgent()
questions = agent.fetch_questions()
if not questions:
return "❌ Failed to fetch questions.", None
results = agent.process_questions([q["question"] for q in questions])
answers_payload = [
{
"task_id": q["id"] if "id" in q else q["task_id"],
"final_answer": next((r["Answer"] for r in results if r["Question"] == q["question"]), "")
}
for q in questions
]
submission_result = agent.submit_answers(answers_payload, username, space_id)
if not submission_result:
return "❌ Failed to submit answers.", None
return "✅ Answers submitted successfully.", results
except Exception as e:
logger.error(f"Unexpected error in run_and_submit_all: {e}")
return f"❌ Unexpected error: {e}", None