import os import gradio as gr import requests import pandas as pd from typing import Tuple, Optional from retriever import EnAgent as RetrieverAgent # Константы DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" class EnAgent: def __init__(self): self.retriever_agent = RetrieverAgent() def __call__(self, question: str) -> str: return self.retriever_agent.answer_question(question) def run_and_submit_all(profile: gr.OAuthProfile | None) -> Tuple[str, Optional[pd.DataFrame]]: if not profile: return "❌ Please Login to Hugging Face with the button.", None username = profile.username space_id = os.getenv("SPACE_ID") api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = EnAgent() except Exception as e: return f"❌ Error initializing agent: {str(e)}", None try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "❌ Fetched questions list is empty or invalid format.", None except requests.exceptions.RequestException as e: return f"❌ Error fetching questions: {str(e)}", None except Exception as e: return f"❌ Unexpected error fetching questions: {str(e)}", None results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") or item.get("id") question_text = item.get("question") if not task_id or question_text is None: continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {str(e)}" }) if not answers_payload: return "⚠️ Agent did not produce any answers to submit.", pd.DataFrame(results_log) submission_data = { "username": username.strip(), "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"✅ Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) return final_status, pd.DataFrame(results_log) except requests.exceptions.RequestException as e: return f"❌ Submission Failed: {str(e)}", pd.DataFrame(results_log) # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# En Agent") gr.Markdown(""" **Instructions:** 1. Log in to Hugging Face below. 2. Click the button to run your agent on questions and submit answers. """) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": demo.launch(debug=True, share=False)