Spaces:
Running
Running
File size: 6,225 Bytes
2694503 b65b755 80c53a2 9f1e952 b3630c7 542bd20 3874de6 a229453 dca59c7 ce2abbe dca59c7 ce2abbe 2ac511b 43c14e0 f24a592 b3630c7 f24a592 3874de6 feb7e00 3874de6 251084c 2c02972 3874de6 dca59c7 1c96088 dca59c7 e4c6668 1c96088 b65b755 d945551 ce2abbe dca59c7 58e10d4 dca59c7 2694503 dca59c7 2694503 dca59c7 2694503 dca59c7 2694503 dca59c7 2694503 dca59c7 2694503 dca59c7 2694503 dca59c7 2694503 dca59c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import os
import gradio as gr
from dotenv import load_dotenv
import json
from deep_translator import GoogleTranslator
import google.generativeai as genai
import time
import random
load_dotenv()
# Configure the Gemini API with your API key
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
def make_call(data):
print(data)
newdata = data.replace("'", '"')
items = json.loads(newdata)
language = items['lang']
query = items['text']
query = query.lower()
translated = None
model = genai.GenerativeModel('gemini-2.5-flash-lite')
retries = 0
max_retries = 5 # You can adjust this number
base_delay = 1 # Initial delay in seconds
while retries < max_retries:
try:
prompt_query = (
f"Answer the given query in a very short message with wisdom, love, and compassion, answer the query as Krishna would have answered"
f"in context to Bhagavad Gita, that feels like talking to God Krishna itself "
f"provide references of shlokas from chapters of Bhagavad Gita which are "
f"relevant to the query. Keep the answer short, precise, and simple. "
f"Query: {query}"
)
response = model.generate_content(prompt_query)
answer = response.text
translated = GoogleTranslator(source='auto', target=language).translate(answer)
break # Exit the loop if the call is successful
except Exception as e:
if "429 Quota exceeded" in str(e):
delay = base_delay * (2 ** retries) + random.uniform(0, 1) # Exponential backoff with jitter
print(f"Quota exceeded. Retrying in {delay:.2f} seconds... (Attempt {retries + 1}/{max_retries})")
time.sleep(delay)
retries += 1
else:
print(f"API call failed: {e}")
translated = f"An error occurred while fetching the answer: {e}"
break # Exit the loop for other errors
else:
# This block executes if the loop completes without a successful break (i.e., max_retries reached)
translated = "Maximum retry attempts reached. Please try again later."
respo = {
"message": translated,
"action": "nothing",
"function": "nothing",
}
print(translated)
return json.dumps(respo)
gradio_interface = gr.Interface(fn=make_call, inputs="text", outputs="text")
gradio_interface.launch()
# import os
# import gradio as gr
# from groq import Groq
# from dotenv import load_dotenv
# import json
# from deep_translator import GoogleTranslator
# import google.generativeai as genai
# load_dotenv()
# api1 = os.getenv("GEMINI_API_KEY")
# genai.configure(api_key=api1)
# # api2 = os.getenv("Groq_key")
# # api3 = os.getenv("GRoq_key")
# # api2 = os.getenv("Groq_key")
# # api2 = os.getenv("Groq_key")
# # api2 = os.getenv("Groq_key")
# # api2 = os.getenv("Groq_key")
# # apis = [
# # api1
# # ]
# # from google import genai
# # client = genai.Client()
# # response = client.models.generate_content(
# # model="gemini-2.5-flash",
# # contents="Explain how AI works in a few words",
# # )
# # print(response.text)
# def make_call(data):
# print(data)
# newdata = data.replace("'", '"')
# items = json.loads(newdata)
# language = items['lang']
# query = items['text']
# query = query.lower()
# answer = None
# while True:
# for api in apis:
# client = genai.Client(
# api_key=api,
# ) # Configure the model with the API key
# # query = st.text_input("Enter your query")
# prmptquery= f"Answer this query in a short message with wisdom, love and compassion, in context to bhagwat geeta, that feels like chatting to a person and provide references of shloks from chapters of bhagwat geeta which is relevant to the query. keep the answer short, precise and simple. Query= {query}"
# try:
# response = client.chat.completions.create(
# messages=[
# {
# "role": "user",
# "content": prmptquery,
# }
# ],
# model="mixtral-8x7b-32768",
# )
# answer = response.choices[0].message.content
# translated = GoogleTranslator(source='auto', target=language).translate(answer)
# except Exception as e:
# print(f"API call failed for: {e}")
# if answer:
# break
# if answer:
# break
# respo = {
# "message": translated,
# "action": "nothing",
# "function": "nothing",
# }
# print(translated)
# return json.dumps(respo)
# gradio_interface = gr.Interface(fn=make_call, inputs="text", outputs="text")
# gradio_interface.launch()
# # print(chat_completion)
# # # Text to 3D
# # import streamlit as st
# # import torch
# # from diffusers import ShapEPipeline
# # from diffusers.utils import export_to_gif
# # # Model loading (Ideally done once at the start for efficiency)
# # ckpt_id = "openai/shap-e"
# # @st.cache_resource # Caches the model for faster subsequent runs
# # def load_model():
# # return ShapEPipeline.from_pretrained(ckpt_id).to("cuda")
# # pipe = load_model()
# # # App Title
# # st.title("Shark 3D Image Generator")
# # # User Inputs
# # prompt = st.text_input("Enter your prompt:", "a shark")
# # guidance_scale = st.slider("Guidance Scale", 0.0, 20.0, 15.0, step=0.5)
# # # Generate and Display Images
# # if st.button("Generate"):
# # with st.spinner("Generating images..."):
# # images = pipe(
# # prompt,
# # guidance_scale=guidance_scale,
# # num_inference_steps=64,
# # size=256,
# # ).images
# # gif_path = export_to_gif(images, "shark_3d.gif")
# # st.image(images[0]) # Display the first image
# # st.success("GIF saved as shark_3d.gif") |