Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,244 +1,106 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
| 3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 5 |
-
from langchain.vectorstores import Chroma
|
| 6 |
-
from langchain import OpenAI, VectorDBQA
|
| 7 |
-
from langchain.chains import RetrievalQAWithSourcesChain
|
| 8 |
-
import PyPDF2
|
| 9 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
api_key = os.environ["OPENAI_API_KEY"]
|
| 12 |
-
|
| 13 |
-
#This function will go through pdf and extract and return list of page texts.
|
| 14 |
-
def read_and_textify(files):
|
| 15 |
-
text_list = []
|
| 16 |
-
sources_list = []
|
| 17 |
-
for file in files:
|
| 18 |
-
pdfReader = PyPDF2.PdfReader(file)
|
| 19 |
-
#print("Page Number:", len(pdfReader.pages))
|
| 20 |
-
for i in range(len(pdfReader.pages)):
|
| 21 |
-
pageObj = pdfReader.pages[i]
|
| 22 |
-
text = pageObj.extract_text()
|
| 23 |
-
pageObj.clear()
|
| 24 |
-
text_list.append(text)
|
| 25 |
-
sources_list.append(file.name + "_page_"+str(i))
|
| 26 |
-
return [text_list,sources_list]
|
| 27 |
-
|
| 28 |
-
st.set_page_config(layout="centered", page_title="Multidoc_QnA")
|
| 29 |
-
st.header("Multidoc_QnA")
|
| 30 |
-
st.write("---")
|
| 31 |
-
|
| 32 |
-
#file uploader
|
| 33 |
-
uploaded_files = st.file_uploader("Upload documents",accept_multiple_files=True, type=["txt","pdf"])
|
| 34 |
-
st.write("---")
|
| 35 |
-
|
| 36 |
-
if uploaded_files is None:
|
| 37 |
-
st.info(f"""Upload files to analyse""")
|
| 38 |
-
elif uploaded_files:
|
| 39 |
-
st.write(str(len(uploaded_files)) + " document(s) loaded..")
|
| 40 |
-
|
| 41 |
-
textify_output = read_and_textify(uploaded_files)
|
| 42 |
-
|
| 43 |
-
documents = textify_output[0]
|
| 44 |
-
sources = textify_output[1]
|
| 45 |
-
|
| 46 |
-
#extract embeddings
|
| 47 |
-
embeddings = OpenAIEmbeddings(openai_api_key = api_key)
|
| 48 |
-
#vstore with metadata. Here we will store page numbers.
|
| 49 |
-
vStore = Chroma.from_texts(documents, embeddings, metadatas=[{"source": s} for s in sources])
|
| 50 |
-
#deciding model
|
| 51 |
-
model_name = "gpt-3.5-turbo"
|
| 52 |
-
# model_name = "gpt-4"
|
| 53 |
-
|
| 54 |
-
retriever = vStore.as_retriever()
|
| 55 |
-
retriever.search_kwargs = {'k':2}
|
| 56 |
-
|
| 57 |
-
#initiate model
|
| 58 |
-
llm = OpenAI(model_name=model_name, openai_api_key = api_key, streaming=True)
|
| 59 |
-
model = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
| 60 |
-
|
| 61 |
-
st.header("Ask your data")
|
| 62 |
-
user_q = st.text_area("Enter your questions here")
|
| 63 |
-
|
| 64 |
-
if st.button("Get Response"):
|
| 65 |
-
try:
|
| 66 |
-
with st.spinner("Model is working on it..."):
|
| 67 |
-
result = model({"question":user_q}, return_only_outputs=True)
|
| 68 |
-
st.subheader('Your response:')
|
| 69 |
-
st.write(result['answer'])
|
| 70 |
-
st.subheader('Source pages:')
|
| 71 |
-
st.write(result['sources'])
|
| 72 |
-
except Exception as e:
|
| 73 |
-
st.error(f"An error occurred: {e}")
|
| 74 |
-
st.error('Oops, the GPT response resulted in an error :( Please try again with a different question.')
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
|
| 88 |
|
| 89 |
|
| 90 |
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
|
|
|
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
|
|
|
|
|
|
| 101 |
|
|
|
|
|
|
|
| 102 |
|
|
|
|
|
|
|
| 103 |
|
|
|
|
| 104 |
|
| 105 |
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
|
|
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
# import gradio as gr
|
| 112 |
-
# import streamlit as st
|
| 113 |
-
# from langchain.embeddings.openai import OpenAIEmbeddings
|
| 114 |
-
# from langchain.text_splitter import CharacterTextSplitter
|
| 115 |
-
# from langchain.vectorstores import Chroma
|
| 116 |
-
# from langchain.chains import ConversationalRetrievalChain
|
| 117 |
-
# from langchain.chat_models import ChatOpenAI
|
| 118 |
-
# from langchain.document_loaders import PyPDFLoader
|
| 119 |
-
# import os
|
| 120 |
-
# import fitz
|
| 121 |
-
# from PIL import Image
|
| 122 |
|
| 123 |
|
| 124 |
-
# # Global variables
|
| 125 |
-
# COUNT, N = 0, 0
|
| 126 |
-
# chat_history = []
|
| 127 |
-
# chain = None # Initialize chain as None
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
| 132 |
|
| 133 |
-
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
# history = history + [(text, '')]
|
| 145 |
-
# return history
|
| 146 |
-
|
| 147 |
-
# # Function to process the PDF file and create a conversation chain
|
| 148 |
-
# def process_file(file):
|
| 149 |
-
# global chain
|
| 150 |
-
# if 'OPENAI_API_KEY' not in os.environ:
|
| 151 |
-
# raise gr.Error('Upload your OpenAI API key')
|
| 152 |
-
|
| 153 |
-
# # Replace with your actual PDF processing logic
|
| 154 |
-
# loader = PyPDFLoader(file.name)
|
| 155 |
-
# documents = loader.load()
|
| 156 |
-
# embeddings = OpenAIEmbeddings()
|
| 157 |
-
# pdfsearch = Chroma.from_documents(documents, embeddings)
|
| 158 |
-
|
| 159 |
-
# chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
|
| 160 |
-
# retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
|
| 161 |
-
# return_source_documents=True)
|
| 162 |
-
# return chain
|
| 163 |
-
|
| 164 |
-
# # Function to generate a response based on the chat history and query
|
| 165 |
-
# def generate_response(history, query, pdf_upload):
|
| 166 |
-
# global COUNT, N, chat_history, chain
|
| 167 |
-
# if not pdf_upload:
|
| 168 |
-
# raise gr.Error(message='Upload a PDF')
|
| 169 |
-
|
| 170 |
-
# if COUNT == 0:
|
| 171 |
-
# chain = process_file(pdf_upload)
|
| 172 |
-
# COUNT += 1
|
| 173 |
-
|
| 174 |
-
# # Replace with your LangChain logic to generate a response
|
| 175 |
-
# result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
|
| 176 |
-
# chat_history += [(query, result["answer"])]
|
| 177 |
-
# N = list(result['source_documents'][0])[1][1]['page'] # Adjust as needed
|
| 178 |
-
|
| 179 |
-
# for char in result['answer']:
|
| 180 |
-
# history[-1][-1] += char
|
| 181 |
-
# return history, ''
|
| 182 |
-
|
| 183 |
-
# # Function to render a specific page of a PDF file as an image
|
| 184 |
-
# def render_file(file):
|
| 185 |
-
# global N
|
| 186 |
-
# doc = fitz.open(file.name)
|
| 187 |
-
# page = doc[N]
|
| 188 |
-
# pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
|
| 189 |
-
# image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
|
| 190 |
-
# return image
|
| 191 |
-
|
| 192 |
-
# # Function to render initial content from the PDF
|
| 193 |
-
# def render_first(pdf_file):
|
| 194 |
-
# # Replace with logic to process the PDF and generate an initial image
|
| 195 |
-
# image = Image.new('RGB', (600, 400), color = 'white') # Placeholder
|
| 196 |
-
# return image
|
| 197 |
-
|
| 198 |
-
# # Streamlit & Gradio Interface
|
| 199 |
-
|
| 200 |
-
# st.title("PDF-Powered Chatbot")
|
| 201 |
-
|
| 202 |
-
# with st.container():
|
| 203 |
-
# gr.Markdown("""
|
| 204 |
-
# <style>
|
| 205 |
-
# .image-container { height: 680px; }
|
| 206 |
-
# </style>
|
| 207 |
-
# """)
|
| 208 |
-
|
| 209 |
-
# with gr.Blocks() as demo:
|
| 210 |
-
# pdf_upload1 = gr.UploadButton("📁 Upload PDF 1", file_types=[".pdf"]) # Define pdf_upload1
|
| 211 |
-
|
| 212 |
-
# # ... (rest of your interface creation)
|
| 213 |
-
|
| 214 |
-
# txt = gr.Textbox(label="Enter your query", placeholder="Ask a question...")
|
| 215 |
-
# submit_btn = gr.Button('Submit')
|
| 216 |
-
|
| 217 |
-
# @submit_btn.click()
|
| 218 |
-
# def on_submit():
|
| 219 |
-
# add_text(chatbot, txt)
|
| 220 |
-
# generate_response(chatbot, txt, pdf_upload1) # Use pdf_upload1 here
|
| 221 |
-
# render_file(pdf_upload1) # Use pdf_upload1 here
|
| 222 |
-
|
| 223 |
-
# if __name__ == "__main__":
|
| 224 |
-
# gr.Interface(
|
| 225 |
-
# fn=generate_response,
|
| 226 |
-
# inputs=[
|
| 227 |
-
# "file", # Define pdf_upload1
|
| 228 |
-
# "text", # Define chatbot output
|
| 229 |
-
# "text" # Define txt
|
| 230 |
-
# ],
|
| 231 |
-
# outputs=[
|
| 232 |
-
# "image", # Define show_img
|
| 233 |
-
# "text", # Define chatbot output
|
| 234 |
-
# "text" # Define txt
|
| 235 |
-
# ],
|
| 236 |
-
# title="PDF-Powered Chatbot"
|
| 237 |
-
# ).launch()
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
|
| 242 |
|
| 243 |
|
| 244 |
-
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from PyPDF2 import PdfReader
|
| 3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import os
|
| 5 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 6 |
+
import google.generativeai as genai
|
| 7 |
+
from langchain.vectorstores import FAISS
|
| 8 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 9 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 10 |
+
from langchain.prompts import PromptTemplate
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
|
| 13 |
+
load_dotenv()
|
| 14 |
+
os.getenv("GOOGLE_API_KEY")
|
| 15 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
|
| 20 |
|
| 21 |
|
| 22 |
+
def get_pdf_text(pdf_docs):
|
| 23 |
+
text=""
|
| 24 |
+
for pdf in pdf_docs:
|
| 25 |
+
pdf_reader= PdfReader(pdf)
|
| 26 |
+
for page in pdf_reader.pages:
|
| 27 |
+
text+= page.extract_text()
|
| 28 |
+
return text
|
| 29 |
|
| 30 |
|
| 31 |
|
| 32 |
+
def get_text_chunks(text):
|
| 33 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
| 34 |
+
chunks = text_splitter.split_text(text)
|
| 35 |
+
return chunks
|
| 36 |
|
| 37 |
|
| 38 |
+
def get_vector_store(text_chunks):
|
| 39 |
+
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
| 40 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
| 41 |
+
vector_store.save_local("faiss_index")
|
| 42 |
|
| 43 |
|
| 44 |
+
def get_conversational_chain():
|
| 45 |
|
| 46 |
+
prompt_template = """
|
| 47 |
+
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
| 48 |
+
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
| 49 |
+
Context:\n {context}?\n
|
| 50 |
+
Question: \n{question}\n
|
| 51 |
|
| 52 |
+
Answer:
|
| 53 |
+
"""
|
| 54 |
|
| 55 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro",
|
| 56 |
+
temperature=0.3)
|
| 57 |
|
| 58 |
+
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
|
| 59 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
| 60 |
|
| 61 |
+
return chain
|
| 62 |
|
| 63 |
|
| 64 |
|
| 65 |
+
def user_input(user_question):
|
| 66 |
+
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
| 67 |
+
|
| 68 |
+
new_db = FAISS.load_local("faiss_index", embeddings)
|
| 69 |
+
docs = new_db.similarity_search(user_question)
|
| 70 |
|
| 71 |
+
chain = get_conversational_chain()
|
| 72 |
|
| 73 |
+
|
| 74 |
+
response = chain(
|
| 75 |
+
{"input_documents":docs, "question": user_question}
|
| 76 |
+
, return_only_outputs=True)
|
| 77 |
|
| 78 |
+
print(response)
|
| 79 |
+
st.write("Reply: ", response["output_text"])
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
def main():
|
| 85 |
+
st.set_page_config("Chat PDF")
|
| 86 |
+
st.header("Chat with PDF using Gemini💁")
|
| 87 |
|
| 88 |
+
user_question = st.text_input("Ask a Question from the PDF Files")
|
| 89 |
|
| 90 |
+
if user_question:
|
| 91 |
+
user_input(user_question)
|
| 92 |
|
| 93 |
+
with st.sidebar:
|
| 94 |
+
st.title("Menu:")
|
| 95 |
+
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
|
| 96 |
+
if st.button("Submit & Process"):
|
| 97 |
+
with st.spinner("Processing..."):
|
| 98 |
+
raw_text = get_pdf_text(pdf_docs)
|
| 99 |
+
text_chunks = get_text_chunks(raw_text)
|
| 100 |
+
get_vector_store(text_chunks)
|
| 101 |
+
st.success("Done")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
|
| 105 |
+
if __name__ == "__main__":
|
| 106 |
+
main()
|