File size: 8,057 Bytes
a6b4aae 592af71 7c73997 a6b4aae 7c73997 2a3300f 7c73997 a6b4aae 9cd7739 7c73997 ad0b86c a6b4aae 2a3300f a6b4aae 2a3300f a6b4aae 9cd7739 a6b4aae 9cd7739 2a3300f 9cd7739 2a3300f 9cd7739 2a3300f a6b4aae 9cd7739 2a3300f 9cd7739 2a3300f a6b4aae 2a3300f 9cd7739 2a3300f a6b4aae 9cd7739 2a3300f 9cd7739 a6b4aae 2a3300f a6b4aae ad0b86c a6b4aae 592af71 2a3300f 9cd7739 2a3300f 9cd7739 2a3300f 9cd7739 2a3300f 9cd7739 2a3300f 9cd7739 2a3300f 7c73997 2a3300f 7c73997 592af71 7c73997 592af71 7c73997 a6b4aae 7c73997 592af71 7c73997 592af71 7c73997 9cd7739 a6b4aae 2a3300f 592af71 2a3300f 9cd7739 592af71 9cd7739 a6b4aae 9cd7739 7c73997 a6b4aae 7c73997 592af71 7c73997 a6b4aae 9cd7739 2a3300f a6b4aae 2a3300f a6b4aae 2a3300f a6b4aae 7c73997 592af71 9cd7739 a6b4aae 7c73997 592af71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# filename: app.py
import os
import torch
import gradio as gr
from PIL import Image
import spaces
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration, # ✅ 正确的多模态类
)
# ========================
# 基本设置
# ========================
torch.manual_seed(100)
MODEL_NAME = "Eric3200/OralGPT-7B-Preview"
# ========================
# 模型与处理器
# ========================
processor = AutoProcessor.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype="auto", # 或 torch.bfloat16 / torch.float16
device_map="auto",
# attn_implementation="flash_attention_2", # 环境支持再打开(速度/显存更优)
).eval()
# pad_token 兜底
try:
PAD_ID = processor.tokenizer.pad_token_id or processor.tokenizer.eos_token_id
except Exception:
PAD_ID = None
# ========================
# 输入转 Qwen/OralGPT 风格 content
# ========================
def to_qwen_content(user_msg):
"""
支持:
- 纯文本
- (img_path, text)
- list 混合(PIL.Image / 文本 / 本地路径字符串)
- dict {files:[...], text:"..."}
"""
contents = []
if isinstance(user_msg, tuple):
img_path, text = user_msg
if img_path:
contents.append({"type": "image", "image": img_path})
if text:
contents.append({"type": "text", "text": str(text)})
elif isinstance(user_msg, list):
for item in user_msg:
if isinstance(item, Image.Image):
contents.append({"type": "image", "image": item})
elif isinstance(item, str) and os.path.isfile(item):
contents.append({"type": "image", "image": item})
else:
contents.append({"type": "text", "text": str(item)})
elif isinstance(user_msg, dict):
if user_msg.get("files"):
for fp in user_msg["files"]:
contents.append({"type": "image", "image": fp})
if user_msg.get("text"):
contents.append({"type": "text", "text": str(user_msg["text"])})
else:
contents.append({"type": "text", "text": str(user_msg)})
return contents
def build_messages(history, latest_user_msg):
messages = []
for u, a in history:
messages.append({"role": "user", "content": to_qwen_content(u)})
if a:
messages.append({"role": "assistant", "content": [{"type": "text", "text": str(a)}]})
messages.append({"role": "user", "content": to_qwen_content(latest_user_msg)})
return messages
# ========================
# ZeroGPU 推理(关键:@spaces.GPU)
# ========================
@spaces.GPU(duration=120)
def qwen_infer(messages, max_new_tokens=512, do_sample=False, temperature=0.7, top_p=0.9, pad_token_id=None):
"""
流程:
1) apply_chat_template → prompt
2) 收集 messages 中的图片
3) processor(...) 打包
4) model.generate(...)
5) 取新增 token 解码
"""
# 1) 文本模板
text_prompt = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# 2) 收集图片(demo 不处理视频)
images = []
for m in messages:
for c in m.get("content", []):
if c.get("type") == "image":
img_obj = c.get("image")
if isinstance(img_obj, Image.Image):
images.append(img_obj)
elif isinstance(img_obj, str) and os.path.isfile(img_obj):
images.append(Image.open(img_obj).convert("RGB"))
# 3) 打包输入
inputs = processor(
text=[text_prompt],
images=images if images else None,
padding=True,
return_tensors="pt",
)
# 放到 GPU/对应设备
if torch.cuda.is_available():
inputs = inputs.to("cuda")
else:
inputs = inputs.to(model.device)
gen_kwargs = dict(
max_new_tokens=int(max_new_tokens),
do_sample=bool(do_sample),
)
if do_sample:
gen_kwargs.update(dict(temperature=float(temperature), top_p=float(top_p)))
if pad_token_id is not None:
gen_kwargs.update(dict(pad_token_id=int(pad_token_id)))
# 4) 生成
generated_ids = model.generate(**inputs, **gen_kwargs)
# 5) 只取新增 token 并解码
trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
outputs = processor.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return outputs[0].strip() if outputs else "(空响应)"
# ========================
# Gradio 界面
# ========================
with gr.Blocks(title="OralGPT-7B-Preview — Gradio Demo (ZeroGPU)") as demo:
gr.Markdown(
"""
# 🦷 OralGPT-7B-Preview — 多模态对话 Demo (ZeroGPU)
上传牙科相关图片并提问,或进行文字对话。右侧可开启 “Thinking(采样)模式” 拓展输出。
"""
)
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
height=500,
show_label=False,
container=True,
type="tuples"
)
with gr.Row():
msg = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="输入消息或上传图片(可多张)…",
show_label=False,
container=False
)
with gr.Row():
clear = gr.Button("🗑️ 清空", size="sm")
submit = gr.Button("📤 发送", variant="primary", size="sm")
with gr.Column(scale=1):
enable_thinking = gr.Checkbox(label="启用 Thinking(采样)模式", value=False)
max_tokens = gr.Slider(64, 2048, value=512, step=32, label="max_new_tokens")
gr.Markdown(
"""
### 示例
- “请问这张图片中是否存在龋病现象?”
- “是否存在牙周病现象?”
- “描述图像中的可疑病灶区域。”
"""
)
gr.Markdown("**注意:此模型仅供研究参考,不用于临床诊断或治疗。**")
# 事件逻辑
def user_submit(message, history, enable_thinking, max_new_tokens):
# 组织本轮用户消息
if isinstance(message, dict) and message.get("files"):
user_msg = []
for fp in message["files"]:
user_msg.append(fp)
if message.get("text", ""):
user_msg.append(message["text"])
else:
user_msg = message.get("text", "") if isinstance(message, dict) else message
history = history + [(user_msg, None)]
messages = build_messages(history[:-1], user_msg)
do_sample = bool(enable_thinking)
# generate 需要数值,这里给默认
temperature = 0.7 if do_sample else 0.7
top_p = 0.9 if do_sample else 0.9
try:
answer = qwen_infer(
messages=messages,
max_new_tokens=int(max_new_tokens),
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
pad_token_id=PAD_ID,
)
except Exception as e:
answer = f"Error: {str(e)}"
history[-1] = (history[-1][0], answer if answer else "(空响应)")
return "", history
msg.submit(user_submit, inputs=[msg, chatbot, enable_thinking, max_tokens], outputs=[msg, chatbot])
submit.click(user_submit, inputs=[msg, chatbot, enable_thinking, max_tokens], outputs=[msg, chatbot])
clear.click(lambda: (None, []), outputs=[msg, chatbot])
if __name__ == "__main__":
demo.launch(share=True)
|