Computervision / app.py
Fadri's picture
Update app.py
2f41bd6 verified
import gradio as gr
import torch
from PIL import Image
from transformers import AutoImageProcessor, ViTForImageClassification
from transformers import pipeline
# CIFAR-10 Klassenlabels
labels_cifar10 = [
'airplane', 'automobile', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck'
]
# Lade Modell und Processor separat
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
model = ViTForImageClassification.from_pretrained("Fadri/results")
# CLIP für Zero-Shot bleibt wie vorher
clip_detector = pipeline(model="openai/clip-vit-large-patch14", task="zero-shot-image-classification")
def predict_cifar10(image_path):
# Bild laden und vorverarbeiten
image = Image.open(image_path).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
# Modellvorhersage
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
# Top-3 Ergebnisse mit Wahrscheinlichkeiten
probabilities = torch.nn.functional.softmax(logits, dim=-1)[0]
top3_probs, top3_indices = torch.topk(probabilities, 3)
results = {}
for idx, prob in zip(top3_indices, top3_probs):
label = model.config.id2label[idx.item()]
results[label] = round(prob.item(), 4)
return results
def classify_image(image):
# Klassifikation mit deinem Modell
cifar10_output = predict_cifar10(image)
# Zero-Shot-Klassifikation mit CLIP
clip_results = clip_detector(image, candidate_labels=labels_cifar10)
clip_output = {result['label']: result['score'] for result in clip_results}
return {
"CIFAR-10 ViT Klassifikation": cifar10_output,
"CLIP Zero-Shot Klassifikation": clip_output
}
# Beispielbilder (Pfade anpassen)
example_images = [
["examples/airplane.jpg"],
["examples/car.jpg"],
["examples/dog.jpg"],
["examples/cat.jpg"]
]
# Gradio Interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="filepath"),
outputs=gr.JSON(),
title="CIFAR-10 Klassifikation",
description="Lade ein Bild hoch und vergleiche die Ergebnisse zwischen deinem trainierten ViT Modell und CLIP.",
examples=example_images
)
iface.launch()