Spaces:
Sleeping
Sleeping
File size: 21,966 Bytes
fdd37bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# logic.py
import os
import json
import cv2
import math
import numpy as np
from collections import deque
from pathlib import Path
import torch
from torch.utils.data import Dataset
from torchvision import transforms
# --- Constants & Configs ---
WAYPOINT_SCALE_FACTOR = 5.0
T1_FUTURE_TIME = 1.0
T2_FUTURE_TIME = 2.0
TRACKER_FREQUENCY = 10
MERGE_PERCENT = 0.4
PIXELS_PER_METER = 8
MAX_DISTANCE = 32
IMG_SIZE = MAX_DISTANCE * PIXELS_PER_METER * 2
EGO_CAR_X = IMG_SIZE // 2
EGO_CAR_Y = IMG_SIZE - (4.0 * PIXELS_PER_METER)
reweight_array = np.ones((20, 20, 7))
last_valid_waypoints = None
last_valid_theta = 0.0
class ControllerConfig:
turn_KP, turn_KI, turn_KD, turn_n = 1.0, 0.1, 0.1, 20
speed_KP, speed_KI, speed_KD, speed_n = 0.5, 0.05, 0.1, 20
max_speed, max_throttle, clip_delta = 6.0, 0.75, 0.25
collision_buffer, detect_threshold = [0.0, 0.0], 0.04
brake_speed, brake_ratio = 0.4, 1.1
# --- Data Handling ---
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
lidar_transform = transforms.Compose([
transforms.Resize((112, 112)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5]),
])
class LMDriveDataset(Dataset):
def __init__(self, data_dir, transform=None, lidar_transform=None):
self.data_dir = Path(data_dir)
self.transform = transform
self.lidar_transform = lidar_transform
self.samples = []
measurement_dir = self.data_dir / "measurements"
image_dir = self.data_dir / "rgb_full"
measurement_files = sorted([f for f in os.listdir(measurement_dir) if f.endswith(".json")])
image_files = sorted([f for f in os.listdir(image_dir) if f.endswith(".jpg")])
num_samples = min(len(measurement_files), len(image_files))
for i in range(num_samples):
frame_id = i
measurement_path = str(measurement_dir / f"{frame_id:04d}.json")
image_name = f"{frame_id:04d}.jpg"
image_path = str(image_dir / image_name)
if not os.path.exists(measurement_path) or not os.path.exists(image_path):
continue
with open(measurement_path, "r") as f:
measurements_data = json.load(f)
self.samples.append({
"image_path": image_path,
"measurement_path": measurement_path,
"frame_id": frame_id,
"measurements": measurements_data
})
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
sample = self.samples[idx]
full_image = cv2.imread(sample["image_path"])
if full_image is None:
raise ValueError(f"Failed to load image: {sample['image_path']}")
full_image = cv2.cvtColor(full_image, cv2.COLOR_BGR2RGB)
front_image = full_image[:600, :800]
left_image = full_image[600:1200, :800]
right_image = full_image[1200:1800, :800]
center_image = full_image[1800:2400, :800]
front_image_tensor = self.transform(front_image)
left_image_tensor = self.transform(left_image)
right_image_tensor = self.transform(right_image)
center_image_tensor = self.transform(center_image)
lidar_path = str(self.data_dir / "lidar" / f"{sample['frame_id']:04d}.png")
lidar = cv2.imread(lidar_path)
if lidar is None:
lidar = np.zeros((112, 112, 3), dtype=np.uint8)
else:
if len(lidar.shape) == 2:
lidar = cv2.cvtColor(lidar, cv2.COLOR_GRAY2BGR)
lidar = cv2.cvtColor(lidar, cv2.COLOR_BGR2RGB)
lidar_tensor = self.lidar_transform(lidar)
measurements_data = sample["measurements"]
x = measurements_data.get("x", 0.0)
y = measurements_data.get("y", 0.0)
theta = measurements_data.get("theta", 0.0)
speed = measurements_data.get("speed", 0.0)
steer = measurements_data.get("steer", 0.0)
throttle = measurements_data.get("throttle", 0.0)
brake = int(measurements_data.get("brake", False))
command = measurements_data.get("command", 0)
is_junction = int(measurements_data.get("is_junction", False))
should_brake = int(measurements_data.get("should_brake", 0))
x_command = measurements_data.get("x_command", 0.0)
y_command = measurements_data.get("y_command", 0.0)
target_point = torch.tensor([x_command, y_command], dtype=torch.float32)
measurements = torch.tensor(
[x, y, theta, speed, steer, throttle, brake, command, is_junction, should_brake],
dtype=torch.float32
)
return {
"rgb": front_image_tensor, "rgb_left": left_image_tensor, "rgb_right": right_image_tensor,
"rgb_center": center_image_tensor, "lidar": lidar_tensor,
"measurements": measurements, "target_point": target_point
}
# --- Object Tracking ---
class TrackedObject:
def __init__(self):
self.last_step = 0
self.last_pos = [0, 0]
self.historical_pos = deque(maxlen=10)
self.historical_steps = deque(maxlen=10)
self.historical_features = deque(maxlen=10)
def update(self, step, object_info):
self.last_step = step
self.last_pos = object_info[:2]
self.historical_pos.append(self.last_pos)
self.historical_steps.append(step)
if len(object_info) > 2:
self.historical_features.append(object_info[2])
class Tracker:
def __init__(self, frequency=10):
self.tracks = []
self.alive_ids = []
self.frequency = frequency
def update_and_predict(self, det_data, pos, theta, frame_num):
det_data_weighted = det_data * reweight_array
detected_objects = find_peak_box(det_data_weighted)
objects_info = []
R = np.array([[np.cos(-theta), -np.sin(-theta)], [np.sin(-theta), np.cos(-theta)]])
for obj in detected_objects:
i, j = obj['coords']
obj_data = obj['raw_data']
center_y, center_x = convert_grid_to_xy(i, j)
center_x += obj_data[1]
center_y += obj_data[2]
loc = R.T.dot(np.array([center_x, center_y]))
objects_info.append([loc[0] + pos[0], loc[1] + pos[1], obj_data[1:]])
updates_ids = self._update(objects_info, frame_num)
speed_results, heading_results = self._predict(updates_ids)
for k, poi in enumerate(updates_ids):
i, j = poi
if heading_results[k] is not None:
factor = MERGE_PERCENT * 0.1
det_data[i, j, 3] = heading_results[k] * factor + det_data[i, j, 3] * (1 - factor)
if speed_results[k] is not None:
factor = MERGE_PERCENT * 0.1
det_data[i, j, 6] = speed_results[k] * factor + det_data[i, j, 6] * (1 - factor)
return det_data
def _update(self, objects_info, step):
latest_ids = []
if len(self.tracks) == 0:
for object_info in objects_info:
to = TrackedObject()
to.update(step, object_info)
self.tracks.append(to)
latest_ids.append(len(self.tracks) - 1)
else:
matched_ids = set()
for idx, object_info in enumerate(objects_info):
min_id, min_error = -1, float('inf')
pos_x, pos_y = object_info[:2]
for _id in self.alive_ids:
if _id in matched_ids:
continue
track_pos = self.tracks[_id].last_pos
distance = np.sqrt((track_pos[0] - pos_x)**2 + (track_pos[1] - pos_y)**2)
if distance < 2.0 and distance < min_error:
min_error = distance
min_id = _id
if min_id != -1:
self.tracks[min_id].update(step, objects_info[idx])
latest_ids.append(min_id)
matched_ids.add(min_id)
else:
to = TrackedObject()
to.update(step, object_info)
self.tracks.append(to)
latest_ids.append(len(self.tracks) - 1)
self.alive_ids = [i for i, track in enumerate(self.tracks) if track.last_step > step - 6]
return latest_ids
def _predict(self, updates_ids):
speed_results, heading_results = [], []
for each_id in updates_ids:
to = self.tracks[each_id]
avg_speed, avg_heading = [], []
for feature in to.historical_features:
avg_speed.append(feature[2])
avg_heading.append(feature[:2])
if len(avg_speed) < 2:
speed_results.append(None)
heading_results.append(None)
continue
avg_speed = np.mean(avg_speed)
avg_heading = np.mean(np.stack(avg_heading), axis=0)
yaw_angle = get_yaw_angle(avg_heading)
heading_results.append((4 - yaw_angle / np.pi) % 2)
speed_results.append(avg_speed)
return speed_results, heading_results
# --- Control System ---
class PIDController:
def __init__(self, K_P=1.0, K_I=0.0, K_D=0.0, n=20):
self._K_P = K_P
self._K_I = K_I
self._K_D = K_D
self._window = deque([0 for _ in range(n)], maxlen=n)
self._max = 0.0
self._min = 0.0
def step(self, error):
self._window.append(error)
self._max = max(self._max, abs(error))
self._min = -abs(self._max)
if len(self._window) >= 2:
integral = np.mean(self._window)
derivative = self._window[-1] - self._window[-2]
else:
integral = 0.0
derivative = 0.0
return self._K_P * error + self._K_I * integral + self._K_D * derivative
class InterfuserController:
def __init__(self, config):
self.turn_controller = PIDController(config.turn_KP, config.turn_KI, config.turn_KD, config.turn_n)
self.speed_controller = PIDController(config.speed_KP, config.speed_KI, config.speed_KD, config.speed_n)
self.config = config
self.collision_buffer = np.array(config.collision_buffer)
self.detect_threshold = config.detect_threshold
self.stop_steps = 0
self.forced_forward_steps = 0
self.red_light_steps = 0
self.block_red_light = 0
self.in_stop_sign_effect = False
self.block_stop_sign_distance = 0
self.stop_sign_timer = 0
self.stop_sign_trigger_times = 0
def run_step(self, speed, waypoints, junction, traffic_light_state, stop_sign, meta_data):
if speed < 0.2:
self.stop_steps += 1
else:
self.stop_steps = max(0, self.stop_steps - 10)
if speed < 0.06 and self.in_stop_sign_effect:
self.in_stop_sign_effect = False
if junction < 0.3:
self.stop_sign_trigger_times = 0
if traffic_light_state > 0.7:
self.red_light_steps += 1
else:
self.red_light_steps = 0
if self.red_light_steps > 1000:
self.block_red_light = 80
self.red_light_steps = 0
if self.block_red_light > 0:
self.block_red_light -= 1
traffic_light_state = 0.01
if stop_sign < 0.6 and self.block_stop_sign_distance < 0.1:
self.in_stop_sign_effect = True
self.block_stop_sign_distance = 2.0
self.stop_sign_trigger_times = 3
self.block_stop_sign_distance = max(0, self.block_stop_sign_distance - 0.05 * speed)
if self.block_stop_sign_distance < 0.1:
if self.stop_sign_trigger_times > 0:
self.block_stop_sign_distance = 2.0
self.stop_sign_trigger_times -= 1
self.in_stop_sign_effect = True
aim = (waypoints[1] + waypoints[0]) / 2.0
angle = np.degrees(np.pi / 2 - np.arctan2(aim[1], aim[0])) / 90
if speed < 0.01:
angle = 0
steer = self.turn_controller.step(angle)
steer = np.clip(steer, -1.0, 1.0)
desired_speed = self.config.max_speed
downsampled_waypoints = downsample_waypoints(waypoints)
safe_dis = get_max_safe_distance(meta_data, downsampled_waypoints, t=0, collision_buffer=self.collision_buffer, threshold=self.detect_threshold)
if traffic_light_state > 0.5 or (stop_sign > 0.6 and self.stop_sign_timer < 20):
desired_speed = 0.0
if stop_sign > 0.6:
self.stop_sign_timer += 1
else:
self.stop_sign_timer = 0
brake = speed > desired_speed * self.config.brake_ratio
delta = np.clip(desired_speed - speed, 0.0, self.config.clip_delta)
throttle = self.speed_controller.step(delta)
throttle = np.clip(throttle, 0.0, self.config.max_throttle)
meta_info_1 = f"speed: {speed:.2f}, target_speed: {desired_speed:.2f}"
meta_info_2 = f"on_road_prob: {junction:.2f}, red_light_prob: {traffic_light_state:.2f}, stop_sign_prob: {1 - stop_sign:.2f}"
meta_info_3 = f"stop_steps: {self.stop_steps}, block_stop_sign_distance: {self.block_stop_sign_distance:.1f}"
if self.stop_steps > 1200:
self.forced_forward_steps = 12
self.stop_steps = 0
if self.forced_forward_steps > 0:
throttle = 0.8
brake = False
self.forced_forward_steps -= 1
if self.in_stop_sign_effect:
throttle = 0
brake = True
return steer, throttle, brake, (meta_info_1, meta_info_2, meta_info_3, safe_dis)
# --- Visualization & Helper Functions ---
class DisplayInterface:
def __init__(self, width=1200, height=600):
self._width = width
self._height = height
def run_interface(self, data):
dashboard = np.zeros((self._height, self._width, 3), dtype=np.uint8)
font = cv2.FONT_HERSHEY_SIMPLEX
dashboard[:, :800] = cv2.resize(data.get('camera_view'), (800, 600))
dashboard[:400, 800:1200] = cv2.resize(data['map_t0'], (400, 400))
dashboard[400:600, 800:1000] = cv2.resize(data['map_t1'], (200, 200))
dashboard[400:600, 1000:1200] = cv2.resize(data['map_t2'], (200, 200))
cv2.line(dashboard, (800, 0), (800, 600), (255, 255, 255), 2)
cv2.line(dashboard, (800, 400), (1200, 400), (255, 255, 255), 2)
cv2.line(dashboard, (1000, 400), (1000, 600), (255, 255, 255), 2)
y_pos = 40
for key, text in data['text_info'].items():
cv2.putText(dashboard, text, (820, y_pos), font, 0.6, (255, 255, 255), 1)
y_pos += 30
y_pos += 10
for t, counts in data['object_counts'].items():
count_str = f"{t}: C={counts['car']} B={counts['bike']} P={counts['pedestrian']}"
cv2.putText(dashboard, count_str, (820, y_pos), font, 0.5, (255, 255, 255), 1)
y_pos += 20
cv2.putText(dashboard, "t0", (1160, 30), font, 0.8, (0, 255, 255), 2)
cv2.putText(dashboard, "t1", (960, 430), font, 0.8, (0, 255, 255), 2)
cv2.putText(dashboard, "t2", (1160, 430), font, 0.8, (0, 255, 255), 2)
return dashboard
def get_yaw_angle(forward_vector):
forward_vector = forward_vector / np.linalg.norm(forward_vector)
return math.atan2(forward_vector[1], forward_vector[0])
def ensure_rgb(image):
if len(image.shape) == 2 or image.shape[2] == 1:
return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
return image
def convert_grid_to_xy(i, j):
return (j - 9.5) * 1.6, (19.5 - i) * 1.6
def find_peak_box(data):
det_data = np.zeros((22, 22, 7))
det_data[1:21, 1:21] = data
detected_objects = []
for i in range(1, 21):
for j in range(1, 21):
if det_data[i, j, 0] > 0.6 and (det_data[i, j, 0] > det_data[i, j - 1, 0] and det_data[i, j, 0] > det_data[i, j + 1, 0] and det_data[i, j, 0] > det_data[i - 1, j, 0] and det_data[i, j, 0] > det_data[i + 1, j, 0]):
length, width, confidence = det_data[i, j, 4], det_data[i, j, 5], det_data[i, j, 0]
obj_type = 'unknown'
if length > 4.0: obj_type = 'car'
elif length / width > 1.5: obj_type = 'bike'
else: obj_type = 'pedestrian'
detected_objects.append({'coords': (i - 1, j - 1), 'type': obj_type, 'confidence': confidence, 'raw_data': det_data[i, j]})
return detected_objects
def add_rect(img, loc, ori, box, value, color):
center_x = int(loc[0] * PIXELS_PER_METER + MAX_DISTANCE * PIXELS_PER_METER)
center_y = int(loc[1] * PIXELS_PER_METER + MAX_DISTANCE * PIXELS_PER_METER)
size_px = (int(box[0] * PIXELS_PER_METER), int(box[1] * PIXELS_PER_METER))
angle_deg = -np.degrees(math.atan2(ori[1], ori[0]))
box_points = cv2.boxPoints(((center_x, center_y), size_px, angle_deg))
cv2.fillConvexPoly(img, np.int32(box_points), [int(x * value) for x in color])
return img
def render(det_data, t=0):
CLASS_COLORS = {'car': (0, 0, 255), 'bike': (0, 255, 0), 'pedestrian': (255, 0, 0), 'unknown': (128, 128, 128)}
det_weighted = det_data * reweight_array
detected_objects = find_peak_box(det_weighted)
counts = {cls: 0 for cls in CLASS_COLORS.keys()}
[counts.update({obj['type']: counts.get(obj['type'], 0) + 1}) for obj in detected_objects]
img = np.zeros((IMG_SIZE, IMG_SIZE, 3), np.uint8)
for obj in detected_objects:
i, j = obj['coords']
obj_data = obj['raw_data']
speed, theta = obj_data[6], obj_data[3] * np.pi
ori = np.array([math.cos(theta), math.sin(theta)])
loc_x = obj_data[1] + t * speed * ori[0] + convert_grid_to_xy(i, j)[0]
loc_y = obj_data[2] - t * speed * ori[1] + convert_grid_to_xy(i, j)[1]
box = np.array([obj_data[4], obj_data[5]]) * (1.5 if obj['type'] == 'pedestrian' else 1.0)
add_rect(img, np.array([loc_x, loc_y]), ori, box, obj['confidence'], CLASS_COLORS[obj['type']])
return img, counts
def render_self_car(loc, ori, box, pixels_per_meter=PIXELS_PER_METER):
img = np.zeros((IMG_SIZE, IMG_SIZE, 3), np.uint8)
center_x = int(loc[0] * pixels_per_meter + MAX_DISTANCE * pixels_per_meter)
center_y = int(loc[1] * pixels_per_meter + MAX_DISTANCE * pixels_per_meter)
size_px = (int(box[0] * pixels_per_meter), int(box[1] * pixels_per_meter))
angle_deg = -np.degrees(math.atan2(ori[1], ori[0]))
box_points = np.int32(cv2.boxPoints(((center_x, center_y), size_px, angle_deg)))
cv2.fillConvexPoly(img, box_points, (0, 255, 255))
return img
def render_waypoints(waypoints, pixels_per_meter=PIXELS_PER_METER):
global last_valid_waypoints
img = np.zeros((IMG_SIZE, IMG_SIZE, 3), np.uint8)
current_waypoints = waypoints if waypoints is not None and len(waypoints) > 2 else last_valid_waypoints
if current_waypoints is not None:
last_valid_waypoints = current_waypoints
for i, point in enumerate(current_waypoints):
px = int(EGO_CAR_X + point[1] * pixels_per_meter)
py = int(EGO_CAR_Y - point[0] * pixels_per_meter)
color = (0, 0, 255) if i == len(current_waypoints) - 1 else (0, 255, 0)
cv2.circle(img, (px, py), 4, color, -1)
return img
def collision_detections(map1, map2, threshold=0.04):
if len(map2.shape) == 3 and map2.shape[2] == 3:
map2 = cv2.cvtColor(map2, cv2.COLOR_BGR2GRAY)
assert map1.shape == map2.shape
overlap_map = (map1 > 0.01) & (map2 > 0.01)
return float(np.sum(overlap_map)) / np.sum(map2 > 0) < threshold
def get_max_safe_distance(meta_data, downsampled_waypoints, t, collision_buffer, threshold):
surround_map = meta_data.reshape(20, 20, 7)[..., :3][..., 0]
if np.sum(surround_map) < 1:
return np.linalg.norm(downsampled_waypoints[-3])
hero_bounding_box = np.array([2.45, 1.0]) + collision_buffer
safe_distance = 0.0
for i in range(len(downsampled_waypoints) - 2):
aim = (downsampled_waypoints[i + 1] + downsampled_waypoints[i + 2]) / 2.0
loc, ori = downsampled_waypoints[i], aim - downsampled_waypoints[i]
self_car_map = render_self_car(loc=loc, ori=ori, box=hero_bounding_box, pixels_per_meter=PIXELS_PER_METER)
self_car_map_gray = cv2.cvtColor(cv2.resize(self_car_map, (20, 20)), cv2.COLOR_BGR2GRAY)
if not collision_detections(surround_map, self_car_map_gray, threshold):
break
safe_distance = max(safe_distance, np.linalg.norm(loc))
return safe_distance
def downsample_waypoints(waypoints, precision=0.2):
downsampled_waypoints = []
last_waypoint = np.array([0.0, 0.0])
for i in range(len(waypoints)):
now_waypoint = waypoints[i]
dis = np.linalg.norm(now_waypoint - last_waypoint)
if dis > precision:
interval = int(dis / precision)
move_vector = (now_waypoint - last_waypoint) / (interval + 1)
for j in range(interval):
downsampled_waypoints.append(last_waypoint + move_vector * (j + 1))
downsampled_waypoints.append(now_waypoint)
last_waypoint = now_waypoint
return downsampled_waypoints |