Spaces:
Sleeping
Sleeping
# # app.py | |
# import os | |
# import json | |
# import traceback | |
# import torch | |
# import gradio as gr | |
# import numpy as np | |
# from PIL import Image | |
# import cv2 | |
# import math | |
# # --- استيراد من الملفات المنظمة في مشروعك --- | |
# from model import build_interfuser_model | |
# from logic import ( | |
# transform, lidar_transform, InterfuserController, ControllerConfig, | |
# Tracker, DisplayInterface, render, render_waypoints, render_self_car, | |
# ensure_rgb, WAYPOINT_SCALE_FACTOR, T1_FUTURE_TIME, T2_FUTURE_TIME | |
# ) | |
# # ============================================================================== | |
# # 1. إعدادات ومسارات النماذج | |
# # ============================================================================== | |
# WEIGHTS_DIR = "model" | |
# EXAMPLES_DIR = "examples" | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# MODELS_SPECIFIC_CONFIGS = { | |
# "interfuser_baseline": { "rgb_backbone_name": "r50", "embed_dim": 256, "direct_concat": True }, | |
# "interfuser_lightweight": { "rgb_backbone_name": "r26", "embed_dim": 128, "enc_depth": 4, "dec_depth": 4, "direct_concat": True } | |
# } | |
# def find_available_models(): | |
# if not os.path.isdir(WEIGHTS_DIR): return [] | |
# return [f.replace(".pth", "") for f in os.listdir(WEIGHTS_DIR) if f.endswith(".pth")] | |
# # ============================================================================== | |
# # 2. الدوال الأساسية | |
# # ============================================================================== | |
# def load_model(model_name: str): | |
# if not model_name or "لم يتم" in model_name: | |
# return None, "الرجاء اختيار نموذج صالح." | |
# weights_path = os.path.join(WEIGHTS_DIR, f"{model_name}.pth") | |
# print(f"Building model: '{model_name}'") | |
# model_config = MODELS_SPECIFIC_CONFIGS.get(model_name, {}) | |
# model = build_interfuser_model(model_config) | |
# if not os.path.exists(weights_path): | |
# gr.Warning(f"ملف الأوزان '{weights_path}' غير موجود.") | |
# else: | |
# try: | |
# state_dic = torch.load(weights_path, map_location=device, weights_only=True) | |
# model.load_state_dict(state_dic) | |
# print(f"تم تحميل أوزان النموذج '{model_name}' بنجاح.") | |
# except Exception as e: | |
# gr.Warning(f"فشل تحميل الأوزان للنموذج '{model_name}': {e}.") | |
# model.to(device) | |
# model.eval() | |
# return model, f"تم تحميل نموذج: {model_name}" | |
# def run_single_frame( | |
# model_from_state, rgb_image_path, rgb_left_image_path, rgb_right_image_path, | |
# rgb_center_image_path, lidar_image_path, measurements_path, target_point_list | |
# ): | |
# """ | |
# (نسخة أكثر قوة مع معالجة أخطاء مفصلة) | |
# """ | |
# if model_from_state is None: | |
# print("API session detected or model not loaded. Loading default model...") | |
# available_models = find_available_models() | |
# if not available_models: raise gr.Error("لا توجد نماذج متاحة للتحميل.") | |
# model_to_use, _ = load_model(available_models[0]) | |
# else: | |
# model_to_use = model_from_state | |
# if model_to_use is None: | |
# raise gr.Error("فشل تحميل النموذج. تحقق من السجلات (Logs).") | |
# try: | |
# # --- 1. التحقق من المدخلات المطلوبة --- | |
# if not (rgb_image_path and measurements_path): | |
# raise gr.Error("الرجاء توفير الصورة الأمامية وملف القياسات على الأقل.") | |
# # --- 2. قراءة ومعالجة المدخلات مع معالجة أخطاء مفصلة --- | |
# try: | |
# rgb_image_pil = Image.open(rgb_image_path).convert("RGB") | |
# except Exception as e: | |
# raise gr.Error(f"فشل تحميل صورة الكاميرا الأمامية. تأكد من أن الملف صحيح. الخطأ: {e}") | |
# def load_optional_image(path, default_image): | |
# if path: | |
# try: | |
# return Image.open(path).convert("RGB") | |
# except Exception as e: | |
# raise gr.Error(f"فشل تحميل الصورة الاختيارية '{os.path.basename(path)}'. الخطأ: {e}") | |
# return default_image | |
# rgb_left_pil = load_optional_image(rgb_left_image_path, rgb_image_pil) | |
# rgb_right_pil = load_optional_image(rgb_right_image_path, rgb_image_pil) | |
# rgb_center_pil = load_optional_image(rgb_center_image_path, rgb_image_pil) | |
# if lidar_image_path: | |
# try: | |
# lidar_array = np.load(lidar_image_path) | |
# if lidar_array.max() > 0: lidar_array = (lidar_array / lidar_array.max()) * 255.0 | |
# lidar_pil = Image.fromarray(lidar_array.astype(np.uint8)).convert('RGB') | |
# except Exception as e: | |
# raise gr.Error(f"فشل تحميل ملف الليدار (.npy). تأكد من أن الملف صحيح. الخطأ: {e}") | |
# else: | |
# lidar_pil = Image.fromarray(np.zeros((112, 112, 3), dtype=np.uint8)) | |
# try: | |
# with open(measurements_path, 'r') as f: m_dict = json.load(f) | |
# except Exception as e: | |
# raise gr.Error(f"فشل تحميل أو قراءة ملف القياسات (.json). تأكد من أنه بصيغة صحيحة. الخطأ: {e}") | |
# # --- 3. تحويل البيانات إلى تنسورات --- | |
# front_tensor = transform(rgb_image_pil).unsqueeze(0).to(device) | |
# left_tensor = transform(rgb_left_pil).unsqueeze(0).to(device) | |
# right_tensor = transform(rgb_right_pil).unsqueeze(0).to(device) | |
# center_tensor = transform(rgb_center_pil).unsqueeze(0).to(device) | |
# lidar_tensor = lidar_transform(lidar_pil).unsqueeze(0).to(device) | |
# measurements_tensor = torch.tensor([[ | |
# m_dict.get('x',0.0), m_dict.get('y',0.0), m_dict.get('theta',0.0), m_dict.get('speed',5.0), | |
# m_dict.get('steer',0.0), m_dict.get('throttle',0.0), float(m_dict.get('brake',0.0)), | |
# m_dict.get('command',2.0), float(m_dict.get('is_junction',0.0)), float(m_dict.get('should_brake',0.0)) | |
# ]], dtype=torch.float32).to(device) | |
# target_point_tensor = torch.tensor([target_point_list], dtype=torch.float32).to(device) | |
# inputs = {'rgb': front_tensor, 'rgb_left': left_tensor, 'rgb_right': right_tensor, 'rgb_center': center_tensor, 'lidar': lidar_tensor, 'measurements': measurements_tensor, 'target_point': target_point_tensor} | |
# # --- 4. تشغيل النموذج --- | |
# with torch.no_grad(): | |
# outputs = model_to_use(inputs) | |
# traffic, waypoints, is_junction, traffic_light, stop_sign, _ = outputs | |
# # --- 5. المعالجة اللاحقة والتصوّر --- | |
# speed, pos, theta = m_dict.get('speed',5.0), [m_dict.get('x',0.0), m_dict.get('y',0.0)], m_dict.get('theta',0.0) | |
# traffic_np, waypoints_np = traffic[0].detach().cpu().numpy().reshape(20,20,-1), waypoints[0].detach().cpu().numpy() * WAYPOINT_SCALE_FACTOR | |
# tracker, controller = Tracker(), InterfuserController(ControllerConfig()) | |
# updated_traffic = tracker.update_and_predict(traffic_np.copy(), pos, theta, 0) | |
# steer, throttle, brake, metadata = controller.run_step(speed, waypoints_np, is_junction.sigmoid()[0,1].item(), traffic_light.sigmoid()[0,0].item(), stop_sign.sigmoid()[0,1].item(), updated_traffic) | |
# # ... (كود الرسم) | |
# map_t0, counts_t0 = render(updated_traffic, t=0) | |
# map_t1, counts_t1 = render(updated_traffic, t=T1_FUTURE_TIME) | |
# map_t2, counts_t2 = render(updated_traffic, t=T2_FUTURE_TIME) | |
# wp_map = render_waypoints(waypoints_np) | |
# self_car_map = render_self_car(np.array([0,0]), [math.cos(0), math.sin(0)], [4.0, 2.0]) | |
# map_t0 = cv2.add(cv2.add(map_t0, wp_map), self_car_map) | |
# map_t0 = cv2.resize(map_t0, (400, 400)) | |
# map_t1 = cv2.add(ensure_rgb(map_t1), ensure_rgb(self_car_map)); map_t1 = cv2.resize(map_t1, (200, 200)) | |
# map_t2 = cv2.add(ensure_rgb(map_t2), ensure_rgb(self_car_map)); map_t2 = cv2.resize(map_t2, (200, 200)) | |
# display = DisplayInterface() | |
# light_state, stop_sign_state = "Red" if traffic_light.sigmoid()[0,0].item() > 0.5 else "Green", "Yes" if stop_sign.sigmoid()[0,1].item() > 0.5 else "No" | |
# interface_data = {'camera_view': np.array(rgb_image_pil),'map_t0': map_t0,'map_t1': map_t1,'map_t2': map_t2, | |
# 'text_info': {'Control': f"S:{steer:.2f} T:{throttle:.2f} B:{int(brake)}",'Light': f"L: {light_state}",'Stop': f"St: {stop_sign_state}"}, | |
# 'object_counts': {'t0': counts_t0,'t1': counts_t1,'t2': counts_t2}} | |
# dashboard_image = display.run_interface(interface_data) | |
# # --- 6. تجهيز المخرجات --- | |
# control_commands_dict = {"steer": steer, "throttle": throttle, "brake": bool(brake)} | |
# return Image.fromarray(dashboard_image), control_commands_dict | |
# except gr.Error as e: | |
# raise e # أعد إظهار أخطاء Gradio كما هي | |
# except Exception as e: | |
# print(traceback.format_exc()) | |
# raise gr.Error(f"حدث خطأ غير متوقع أثناء معالجة الإطار: {e}") | |
# # ============================================================================== | |
# # 5. تعريف واجهة Gradio (لا تغيير هنا) | |
# # ============================================================================== | |
# # ... (كود الواجهة بالكامل يبقى كما هو من النسخة السابقة) ... | |
# available_models = find_available_models() | |
# with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), css=".gradio-container {max-width: 95% !important;}") as demo: | |
# model_state = gr.State(value=None) | |
# gr.Markdown("# 🚗 محاكاة القيادة الذاتية باستخدام Interfuser") | |
# gr.Markdown("مرحباً بك في واجهة اختبار نموذج Interfuser. اتبع الخطوات أدناه لتشغيل المحاكاة على إطار واحد.") | |
# with gr.Row(): | |
# # -- العمود الأيسر: الإعدادات والمدخلات -- | |
# with gr.Column(scale=1): | |
# with gr.Group(): | |
# gr.Markdown("## ⚙️ الخطوة 1: اختر النموذج") | |
# with gr.Row(): | |
# model_selector = gr.Dropdown( | |
# label="النماذج المتاحة", | |
# choices=available_models, | |
# value=available_models[0] if available_models else "لم يتم العثور على نماذج" | |
# ) | |
# status_textbox = gr.Textbox(label="حالة النموذج", interactive=False) | |
# with gr.Group(): | |
# gr.Markdown("## 🗂️ الخطوة 2: ارفع ملفات السيناريو") | |
# with gr.Group(): | |
# gr.Markdown("**(مطلوب)**") | |
# api_rgb_image_path = gr.File(label="صورة الكاميرا الأمامية (RGB)", type="filepath") | |
# api_measurements_path = gr.File(label="ملف القياسات (JSON)", type="filepath") | |
# with gr.Accordion("📷 مدخلات اختيارية (كاميرات ومستشعرات إضافية)", open=False): | |
# api_rgb_left_image_path = gr.File(label="كاميرا اليسار (RGB)", type="filepath") | |
# api_rgb_right_image_path = gr.File(label="كاميرا اليمين (RGB)", type="filepath") | |
# api_rgb_center_image_path = gr.File(label="كاميرا الوسط (RGB)", type="filepath") | |
# api_lidar_image_path = gr.File(label="بيانات الليدار (NPY)", type="filepath") | |
# api_target_point_list = gr.JSON(label="📍 النقطة المستهدفة (x, y)", value=[0.0, 100.0]) | |
# api_run_button = gr.Button("🚀 شغل المحاكاة", variant="primary", scale=2) | |
# with gr.Group(): | |
# gr.Markdown("### ✨ أمثلة جاهزة") | |
# gr.Markdown("انقر على مثال لتعبئة الحقول تلقائياً (يتطلب وجود مجلد `examples`).") | |
# gr.Examples( | |
# examples=[ | |
# [os.path.join(EXAMPLES_DIR, "sample1", "rgb.jpg"), os.path.join(EXAMPLES_DIR, "sample1", "measurements.json")], | |
# [os.path.join(EXAMPLES_DIR, "sample2", "rgb.jpg"), os.path.join(EXAMPLES_DIR, "sample2", "measurements.json")] | |
# ], | |
# inputs=[api_rgb_image_path, api_measurements_path], | |
# label="اختر سيناريو اختبار" | |
# ) | |
# # -- العمود الأيمن: المخرجات -- | |
# with gr.Column(scale=2): | |
# with gr.Group(): | |
# gr.Markdown("## 📊 الخطوة 3: شاهد النتائج") | |
# api_output_image = gr.Image(label="لوحة التحكم المرئية (Dashboard)", type="pil", interactive=False) | |
# api_control_json = gr.JSON(label="أوامر التحكم (JSON)") | |
# # --- ربط منطق الواجهة --- | |
# if available_models: | |
# demo.load(fn=load_model, inputs=model_selector, outputs=[model_state, status_textbox]) | |
# model_selector.change(fn=load_model, inputs=model_selector, outputs=[model_state, status_textbox]) | |
# api_run_button.click( | |
# fn=run_single_frame, | |
# inputs=[model_state, api_rgb_image_path, api_rgb_left_image_path, api_rgb_right_image_path, | |
# api_rgb_center_image_path, api_lidar_image_path, api_measurements_path, api_target_point_list], | |
# outputs=[api_output_image, api_control_json], | |
# api_name="run_single_frame" | |
# ) | |
# # ============================================================================== | |
# # 6. تشغيل التطبيق | |
# # ============================================================================== | |
# if __name__ == "__main__": | |
# if not available_models: | |
# print("تحذير: لم يتم العثور على أي ملفات نماذج (.pth) في مجلد 'model/weights'.") | |
# demo.queue().launch(debug=True, share=True, show_api=True) | |
# # الحديد | |
# # app.py (النسخة المدمجة مع FastAPI) | |
# import os | |
# import json | |
# import traceback | |
# import torch | |
# import gradio as gr | |
# import numpy as np | |
# from PIL import Image | |
# import io | |
# import base64 | |
# import cv2 | |
# import math | |
# from fastapi import FastAPI, UploadFile, File, Form, HTTPException # ✅ استيراد FastAPI | |
# from typing import List # ✅ استيراد للـ Type Hinting | |
# # --- استيراد من الملفات المنظمة في مشروعك --- | |
# from model import build_interfuser_model | |
# from logic import ( | |
# transform, lidar_transform, InterfuserController, ControllerConfig, | |
# Tracker, DisplayInterface, render, render_waypoints, render_self_car, | |
# ensure_rgb, WAYPOINT_SCALE_FACTOR, T1_FUTURE_TIME, T2_FUTURE_TIME | |
# ) | |
# # ✅ ============================================================================== | |
# # ✅ 0. إنشاء تطبيق FastAPI الرئيسي | |
# # ✅ ============================================================================== | |
# # هذا هو التطبيق الرئيسي الذي سيتم تشغيله. | |
# # سيحتوي على كل من واجهة Gradio وواجهة API المخصصة. | |
# app = FastAPI() | |
# # ============================================================================== | |
# # 1. إعدادات ومسارات النماذج (لا تغيير) | |
# # ============================================================================== | |
# WEIGHTS_DIR = "model" | |
# EXAMPLES_DIR = "examples" | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# MODELS_SPECIFIC_CONFIGS = { | |
# "interfuser_baseline": { "rgb_backbone_name": "r50", "embed_dim": 256, "direct_concat": True }, | |
# "interfuser_lightweight": { "rgb_backbone_name": "r26", "embed_dim": 128, "enc_depth": 4, "dec_depth": 4, "direct_concat": True } | |
# } | |
# def find_available_models(): | |
# if not os.path.isdir(WEIGHTS_DIR): return [] | |
# return [f.replace(".pth", "") for f in os.listdir(WEIGHTS_DIR) if f.endswith(".pth")] | |
# # ============================================================================== | |
# # 2. الدوال الأساسية (لا تغيير) | |
# # ============================================================================== | |
# # ... (دالة load_model تبقى كما هي تمامًا) ... | |
# def load_model(model_name: str): | |
# # ... نفس الكود ... | |
# if not model_name or "لم يتم" in model_name: | |
# return None, "الرجاء اختيار نموذج صالح." | |
# weights_path = os.path.join(WEIGHTS_DIR, f"{model_name}.pth") | |
# print(f"Building model: '{model_name}'") | |
# model_config = MODELS_SPECIFIC_CONFIGS.get(model_name, {}) | |
# model = build_interfuser_model(model_config) | |
# if not os.path.exists(weights_path): | |
# gr.Warning(f"ملف الأوزان '{weights_path}' غير موجود.") | |
# else: | |
# try: | |
# state_dic = torch.load(weights_path, map_location=device, weights_only=True) | |
# model.load_state_dict(state_dic) | |
# print(f"تم تحميل أوزان النموذج '{model_name}' بنجاح.") | |
# except Exception as e: | |
# gr.Warning(f"فشل تحميل الأوزان للنموذج '{model_name}': {e}.") | |
# model.to(device) | |
# model.eval() | |
# return model, f"تم تحميل نموذج: {model_name}" | |
# # ... (دالة run_single_frame تبقى كما هي تمامًا) ... | |
# def run_single_frame( | |
# model_from_state, rgb_image_path, rgb_left_image_path, rgb_right_image_path, | |
# rgb_center_image_path, lidar_image_path, measurements_path, target_point_list | |
# ): | |
# # ... نفس الكود ... | |
# if model_from_state is None: | |
# print("API session detected or model not loaded. Loading default model...") | |
# available_models = find_available_models() | |
# if not available_models: raise gr.Error("لا توجد نماذج متاحة للتحميل.") | |
# model_to_use, _ = load_model(available_models[0]) | |
# else: | |
# model_to_use = model_from_state | |
# if model_to_use is None: | |
# raise gr.Error("فشل تحميل النموذج. تحقق من السجلات (Logs).") | |
# try: | |
# # ... (بقية الكود داخل الدالة لا يتغير) ... | |
# if not (rgb_image_path and measurements_path): | |
# raise gr.Error("الرجاء توفير الصورة الأمامية وملف القياسات على الأقل.") | |
# try: | |
# rgb_image_pil = Image.open(rgb_image_path).convert("RGB") | |
# except Exception as e: | |
# raise gr.Error(f"فشل تحميل صورة الكاميرا الأمامية. تأكد من أن الملف صحيح. الخطأ: {e}") | |
# def load_optional_image(path, default_image): | |
# if path: | |
# try: return Image.open(path).convert("RGB") | |
# except Exception as e: raise gr.Error(f"فشل تحميل الصورة الاختيارية '{os.path.basename(path)}'. الخطأ: {e}") | |
# return default_image | |
# rgb_left_pil = load_optional_image(rgb_left_image_path, rgb_image_pil) | |
# rgb_right_pil = load_optional_image(rgb_right_image_path, rgb_image_pil) | |
# rgb_center_pil = load_optional_image(rgb_center_image_path, rgb_image_pil) | |
# if lidar_image_path: | |
# try: | |
# lidar_array = np.load(lidar_image_path) | |
# if lidar_array.max() > 0: lidar_array = (lidar_array / lidar_array.max()) * 255.0 | |
# lidar_pil = Image.fromarray(lidar_array.astype(np.uint8)).convert('RGB') | |
# except Exception as e: raise gr.Error(f"فشل تحميل ملف الليدار (.npy). تأكد من أن الملف صحيح. الخطأ: {e}") | |
# else: | |
# lidar_pil = Image.fromarray(np.zeros((112, 112, 3), dtype=np.uint8)) | |
# try: | |
# with open(measurements_path, 'r') as f: m_dict = json.load(f) | |
# except Exception as e: raise gr.Error(f"فشل تحميل أو قراءة ملف القياسات (.json). تأكد من أنه بصيغة صحيحة. الخطأ: {e}") | |
# front_tensor = transform(rgb_image_pil).unsqueeze(0).to(device) | |
# left_tensor = transform(rgb_left_pil).unsqueeze(0).to(device) | |
# right_tensor = transform(rgb_right_pil).unsqueeze(0).to(device) | |
# center_tensor = transform(rgb_center_pil).unsqueeze(0).to(device) | |
# lidar_tensor = lidar_transform(lidar_pil).unsqueeze(0).to(device) | |
# measurements_tensor = torch.tensor([[m_dict.get('x',0.0), m_dict.get('y',0.0), m_dict.get('theta',0.0), m_dict.get('speed',5.0), m_dict.get('steer',0.0), m_dict.get('throttle',0.0), float(m_dict.get('brake',0.0)), m_dict.get('command',2.0), float(m_dict.get('is_junction',0.0)), float(m_dict.get('should_brake',0.0))]], dtype=torch.float32).to(device) | |
# target_point_tensor = torch.tensor([target_point_list], dtype=torch.float32).to(device) | |
# inputs = {'rgb': front_tensor, 'rgb_left': left_tensor, 'rgb_right': right_tensor, 'rgb_center': center_tensor, 'lidar': lidar_tensor, 'measurements': measurements_tensor, 'target_point': target_point_tensor} | |
# with torch.no_grad(): | |
# outputs = model_to_use(inputs) | |
# traffic, waypoints, is_junction, traffic_light, stop_sign, _ = outputs | |
# speed, pos, theta = m_dict.get('speed',5.0), [m_dict.get('x',0.0), m_dict.get('y',0.0)], m_dict.get('theta',0.0) | |
# traffic_np, waypoints_np = traffic[0].detach().cpu().numpy().reshape(20,20,-1), waypoints[0].detach().cpu().numpy() * WAYPOINT_SCALE_FACTOR | |
# tracker, controller = Tracker(), InterfuserController(ControllerConfig()) | |
# updated_traffic = tracker.update_and_predict(traffic_np.copy(), pos, theta, 0) | |
# steer, throttle, brake, metadata = controller.run_step(speed, waypoints_np, is_junction.sigmoid()[0,1].item(), traffic_light.sigmoid()[0,0].item(), stop_sign.sigmoid()[0,1].item(), updated_traffic) | |
# map_t0, counts_t0 = render(updated_traffic, t=0) | |
# map_t1, counts_t1 = render(updated_traffic, t=T1_FUTURE_TIME) | |
# map_t2, counts_t2 = render(updated_traffic, t=T2_FUTURE_TIME) | |
# wp_map = render_waypoints(waypoints_np) | |
# self_car_map = render_self_car(np.array([0,0]), [math.cos(0), math.sin(0)], [4.0, 2.0]) | |
# map_t0 = cv2.add(cv2.add(map_t0, wp_map), self_car_map); map_t0 = cv2.resize(map_t0, (400, 400)) | |
# map_t1 = cv2.add(ensure_rgb(map_t1), ensure_rgb(self_car_map)); map_t1 = cv2.resize(map_t1, (200, 200)) | |
# map_t2 = cv2.add(ensure_rgb(map_t2), ensure_rgb(self_car_map)); map_t2 = cv2.resize(map_t2, (200, 200)) | |
# display = DisplayInterface() | |
# light_state, stop_sign_state = "Red" if traffic_light.sigmoid()[0,0].item() > 0.5 else "Green", "Yes" if stop_sign.sigmoid()[0,1].item() > 0.5 else "No" | |
# interface_data = {'camera_view': np.array(rgb_image_pil),'map_t0': map_t0,'map_t1': map_t1,'map_t2': map_t2, 'text_info': {'Control': f"S:{steer:.2f} T:{throttle:.2f} B:{int(brake)}",'Light': f"L: {light_state}",'Stop': f"St: {stop_sign_state}"}, 'object_counts': {'t0': counts_t0,'t1': counts_t1,'t2': counts_t2}} | |
# dashboard_image = display.run_interface(interface_data) | |
# control_commands_dict = {"steer": steer, "throttle": throttle, "brake": bool(brake)} | |
# return Image.fromarray(dashboard_image), control_commands_dict | |
# except gr.Error as e: raise e | |
# except Exception as e: | |
# print(traceback.format_exc()) | |
# raise gr.Error(f"حدث خطأ غير متوقع أثناء معالجة الإطار: {e}") | |
# # ✅ ============================================================================== | |
# # ✅ 3. تعريف نقطة النهاية المخصصة (Custom API) باستخدام FastAPI | |
# # ✅ ============================================================================== | |
# @app.post("/api/predict_flutter", tags=["Flutter API"]) | |
# async def flutter_predict_endpoint( | |
# rgb_image: UploadFile = File(..., description="صورة الكاميرا الأمامية المطلوبة"), | |
# measurements_json: UploadFile = File(..., description="ملف القياسات المطلوب بصيغة JSON"), | |
# target_point: str = Form(default='[0.0, 100.0]', description="النقطة المستهدفة كـ JSON string"), | |
# # المدخلات الاختيارية | |
# rgb_left_image: UploadFile = File(None), | |
# rgb_right_image: UploadFile = File(None), | |
# rgb_center_image: UploadFile = File(None), | |
# lidar_data: UploadFile = File(None), | |
# ): | |
# """ | |
# نقطة نهاية بسيطة ومخصصة لتطبيق فلاتر. | |
# تستقبل الملفات مباشرة وتستدعي دالة النموذج. | |
# """ | |
# print("✅ Custom API endpoint /api/predict_flutter called!") | |
# # دالة داخلية لحفظ الملفات المرفوعة مؤقتاً | |
# async def save_upload_file(upload_file: UploadFile, destination: str): | |
# if not upload_file: return None | |
# try: | |
# with open(destination, "wb") as f: | |
# f.write(await upload_file.read()) | |
# return destination | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f"Could not save file: {e}") | |
# # حفظ الملفات المطلوبة والاختيارية في مسارات مؤقتة | |
# temp_rgb_path = await save_upload_file(rgb_image, "temp_rgb.png") | |
# temp_measurements_path = await save_upload_file(measurements_json, "temp_measurements.json") | |
# temp_left_path = await save_upload_file(rgb_left_image, "temp_left.png") | |
# temp_right_path = await save_upload_file(rgb_right_image, "temp_right.png") | |
# temp_center_path = await save_upload_file(rgb_center_image, "temp_center.png") | |
# temp_lidar_path = await save_upload_file(lidar_data, "temp_lidar.npy") | |
# try: | |
# target_point_list = json.loads(target_point) | |
# except json.JSONDecodeError: | |
# raise HTTPException(status_code=400, detail="Invalid JSON format for target_point.") | |
# try: | |
# # استدعاء دالة النموذج مباشرة بالمسارات المؤقتة | |
# # لا نحتاج لـ model_from_state لأننا سنقوم بتحميل النموذج مباشرة | |
# dashboard_pil, commands_dict = run_single_frame( | |
# model_from_state=None, # سيتم تحميل النموذج الافتراضي داخل الدالة | |
# rgb_image_path=temp_rgb_path, | |
# rgb_left_image_path=temp_left_path, | |
# rgb_right_image_path=temp_right_path, | |
# rgb_center_image_path=temp_center_path, | |
# lidar_image_path=temp_lidar_path, | |
# measurements_path=temp_measurements_path, | |
# target_point_list=target_point_list | |
# ) | |
# # --- ✅ التعديل هنا --- | |
# # تحويل صورة PIL إلى بيانات ثنائية في الذاكرة | |
# buffered = io.BytesIO() | |
# dashboard_pil.save(buffered, format="PNG") | |
# # تشفير البيانات الثنائية إلى نص Base64 | |
# img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
# print("✅ Model execution successful. Returning commands and Base64 image.") | |
# # إرجاع كائن JSON يحتوي على كل من الأوامر والصورة المشفرة | |
# return { | |
# "control_commands": commands_dict, | |
# "dashboard_image_base64": img_str | |
# } | |
# # # FastAPI لا يمكنه إرجاع كائن PIL مباشرة، يجب تحويله | |
# # # يمكننا إعادته كـ Base64 أو حفظه وإرجاع مساره | |
# # # للتبسيط، سنرجع فقط أوامر التحكم | |
# # print("✅ Model execution successful. Returning control commands.") | |
# # return commands_dict | |
# except gr.Error as e: | |
# # تحويل أخطاء Gradio إلى أخطاء HTTP | |
# raise HTTPException(status_code=400, detail=str(e)) | |
# except Exception as e: | |
# print(traceback.format_exc()) | |
# raise HTTPException(status_code=500, detail=f"An internal server error occurred: {e}") | |
# finally: | |
# # ✅ تنظيف الملفات المؤقتة بعد الاستخدام | |
# for path in [temp_rgb_path, temp_measurements_path, temp_left_path, temp_right_path, temp_center_path, temp_lidar_path]: | |
# if path and os.path.exists(path): | |
# os.remove(path) | |
# # ============================================================================== | |
# # 4. تعريف واجهة Gradio (لا تغيير) | |
# # ============================================================================== | |
# available_models = find_available_models() | |
# with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), css=".gradio-container {max-width: 95% !important;}") as demo: | |
# # ... (كل كود واجهة Gradio يبقى كما هو تمامًا) ... | |
# model_state = gr.State(value=None) | |
# gr.Markdown("# 🚗 محاكاة القيادة الذاتية باستخدام Interfuser") | |
# gr.Markdown("مرحباً بك في واجهة اختبار نموذج Interfuser. اتبع الخطوات أدناه لتشغيل المحاكاة على إطار واحد.") | |
# with gr.Row(): | |
# with gr.Column(scale=1): | |
# with gr.Group(): | |
# gr.Markdown("## ⚙️ الخطوة 1: اختر النموذج") | |
# with gr.Row(): | |
# model_selector = gr.Dropdown(label="النماذج المتاحة", choices=available_models, value=available_models[0] if available_models else "لم يتم العثور على نماذج") | |
# status_textbox = gr.Textbox(label="حالة النموذج", interactive=False) | |
# with gr.Group(): | |
# gr.Markdown("## 🗂️ الخطوة 2: ارفع ملفات السيناريو") | |
# with gr.Group(): | |
# gr.Markdown("**(مطلوب)**") | |
# api_rgb_image_path = gr.File(label="صورة الكاميرا الأمامية (RGB)", type="filepath") | |
# api_measurements_path = gr.File(label="ملف القياسات (JSON)", type="filepath") | |
# with gr.Accordion("📷 مدخلات اختيارية (كاميرات ومستشعرات إضافية)", open=False): | |
# api_rgb_left_image_path = gr.File(label="كاميرا اليسار (RGB)", type="filepath") | |
# api_rgb_right_image_path = gr.File(label="كاميرا اليمين (RGB)", type="filepath") | |
# api_rgb_center_image_path = gr.File(label="كاميرا الوسط (RGB)", type="filepath") | |
# api_lidar_image_path = gr.File(label="بيانات الليدار (NPY)", type="filepath") | |
# api_target_point_list = gr.JSON(label="📍 النقطة المستهدفة (x, y)", value=[0.0, 100.0]) | |
# api_run_button = gr.Button("🚀 شغل المحاكاة", variant="primary", scale=2) | |
# with gr.Group(): | |
# gr.Markdown("### ✨ أمثلة جاهزة") | |
# gr.Markdown("انقر على مثال لتعبئة الحقول تلقائياً (يتطلب وجود مجلد `examples`).") | |
# gr.Examples(examples=[[os.path.join(EXAMPLES_DIR, "sample1", "rgb.jpg"), os.path.join(EXAMPLES_DIR, "sample1", "measurements.json")], [os.path.join(EXAMPLES_DIR, "sample2", "rgb.jpg"), os.path.join(EXAMPLES_DIR, "sample2", "measurements.json")]], inputs=[api_rgb_image_path, api_measurements_path], label="اختر سيناريو اختبار") | |
# with gr.Column(scale=2): | |
# with gr.Group(): | |
# gr.Markdown("## 📊 الخطوة 3: شاهد النتائج") | |
# api_output_image = gr.Image(label="لوحة التحكم المرئية (Dashboard)", type="pil", interactive=False) | |
# api_control_json = gr.JSON(label="أوامر التحكم (JSON)") | |
# if available_models: | |
# demo.load(fn=load_model, inputs=model_selector, outputs=[model_state, status_textbox]) | |
# model_selector.change(fn=load_model, inputs=model_selector, outputs=[model_state, status_textbox]) | |
# api_run_button.click(fn=run_single_frame, inputs=[model_state, api_rgb_image_path, api_rgb_left_image_path, api_rgb_right_image_path, api_rgb_center_image_path, api_lidar_image_path, api_measurements_path, api_target_point_list], outputs=[api_output_image, api_control_json], api_name="run_single_frame") | |
# # ✅ ============================================================================== | |
# # ✅ 5. تركيب واجهة Gradio على تطبيق FastAPI | |
# # ✅ ============================================================================== | |
# # هذه هي الخطوة السحرية التي تدمج العالمين معًا. | |
# # app = gr.mount_ публіk(app, demo, path="/") | |
# app = gr.mount_gradio_app(app, demo, path="/") | |
# # ✅ ============================================================================== | |
# # ✅ 6. تشغيل الخادم المدمج (نقطة الدخول) | |
# # ✅ ============================================================================== | |
# # هذا الجزء يخبر السكربت أنه عند تشغيله مباشرة، | |
# # يجب أن يقوم بتشغيل تطبيق FastAPI باستخدام خادم uvicorn. | |
# if __name__ == "__main__": | |
# import uvicorn | |
# # Hugging Face Spaces يتوقع أن يعمل التطبيق على المنفذ 7860 | |
# # و host="0.0.0.0" يجعله متاحًا للوصول من خارج الحاوية (container) | |
# uvicorn.run(app, host="0.0.0.0", port=7860) | |
# app.py (النسخة النهائية المدمجة مع توثيق FastAPI) | |
# ------------------------------------------------- | |
##-- 1. إضافة الاستيرادات اللازمة للتوثيق | |
# ------------------------------------------------- | |
import os | |
import json | |
import traceback | |
import torch | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import io | |
import base64 | |
import cv2 | |
import math | |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException | |
from pydantic import BaseModel, Field | |
from typing import List, Dict | |
# --- استيراد من الملفات المنظمة في مشروعك --- | |
from model import build_interfuser_model | |
from logic import ( | |
transform, lidar_transform, InterfuserController, ControllerConfig, | |
Tracker, DisplayInterface, render, render_waypoints, render_self_car, | |
ensure_rgb, WAYPOINT_SCALE_FACTOR, T1_FUTURE_TIME, T2_FUTURE_TIME | |
) | |
# ------------------------------------------------- | |
##-- 2. تعريف تطبيق FastAPI مع وصف عام | |
# ------------------------------------------------- | |
app = FastAPI( | |
title="API لمحاكاة القيادة الذاتية (Interfuser)", | |
description=""" | |
واجهة برمجة تطبيقات مخصصة للتحكم في نموذج Interfuser. | |
يحتوي هذا التطبيق على: | |
- **واجهة رسومية (UI)** على المسار الرئيسي (`/`) للتفاعل البصري. | |
- **واجهة برمجية (API)** على المسار (`/api/predict_flutter`) مخصصة للتطبيقات مثل فلاتر. | |
- **توثيق تفاعلي** على المسار (`/docs`). | |
""", | |
version="1.1.0" | |
) | |
# ------------------------------------------------- | |
##-- 3. تعريف هياكل البيانات (Schemas) للمدخلات والمخرجات | |
# ------------------------------------------------- | |
class ControlCommands(BaseModel): | |
steer: float = Field(..., example=-0.61, description="قيمة التوجيه (Steering). تتراوح بين -1 (يسار) و 1 (يمين).") | |
throttle: float = Field(..., example=0.75, description="قيمة التسارع (Throttle). تتراوح بين 0 و 1.") | |
brake: bool = Field(..., example=False, description="هل يجب الضغط على المكابح (Brake)؟") | |
class PredictionResponse(BaseModel): | |
control_commands: ControlCommands = Field(..., description="كائن يحتوي على أوامر التحكم المتوقعة.") | |
dashboard_image_base64: str = Field(..., description="صورة لوحة التحكم كـ نص مشفر بصيغة Base64.") | |
# ============================================================================== | |
# 1. إعدادات ومسارات النماذج (لا تغيير) | |
# ============================================================================== | |
# ... (هذا الجزء يبقى كما هو تمامًا) ... | |
WEIGHTS_DIR = "model" | |
EXAMPLES_DIR = "examples" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
MODELS_SPECIFIC_CONFIGS = { | |
"interfuser_baseline": { "rgb_backbone_name": "r50", "embed_dim": 256, "direct_concat": True }, | |
"interfuser_lightweight": { "rgb_backbone_name": "r26", "embed_dim": 128, "enc_depth": 4, "dec_depth": 4, "direct_concat": True } | |
} | |
def find_available_models(): | |
if not os.path.isdir(WEIGHTS_DIR): return [] | |
return [f.replace(".pth", "") for f in os.listdir(WEIGHTS_DIR) if f.endswith(".pth")] | |
# ============================================================================== | |
# 2. الدوال الأساسية (لا تغيير) | |
# ============================================================================== | |
# ... (دالة load_model ودالة run_single_frame تبقيان كما هما تمامًا) ... | |
def load_model(model_name: str): | |
if not model_name or "لم يتم" in model_name: return None, "الرجاء اختيار نموذج صالح." | |
weights_path = os.path.join(WEIGHTS_DIR, f"{model_name}.pth") | |
print(f"Building model: '{model_name}'") | |
model_config = MODELS_SPECIFIC_CONFIGS.get(model_name, {}) | |
model = build_interfuser_model(model_config) | |
if not os.path.exists(weights_path): | |
gr.Warning(f"ملف الأوزان '{weights_path}' غير موجود.") | |
else: | |
try: | |
state_dic = torch.load(weights_path, map_location=device, weights_only=True) | |
model.load_state_dict(state_dic) | |
print(f"تم تحميل أوزان النموذج '{model_name}' بنجاح.") | |
except Exception as e: gr.Warning(f"فشل تحميل الأوزان للنموذج '{model_name}': {e}.") | |
model.to(device) | |
model.eval() | |
return model, f"تم تحميل نموذج: {model_name}" | |
def run_single_frame(model_from_state, rgb_image_path, rgb_left_image_path, rgb_right_image_path, rgb_center_image_path, lidar_image_path, measurements_path, target_point_list): | |
if model_from_state is None: | |
print("API session detected or model not loaded. Loading default model...") | |
available_models = find_available_models() | |
if not available_models: raise gr.Error("لا توجد نماذج متاحة للتحميل.") | |
model_to_use, _ = load_model(available_models[0]) | |
else: | |
model_to_use = model_from_state | |
if model_to_use is None: raise gr.Error("فشل تحميل النموذج. تحقق من السجلات (Logs).") | |
try: | |
if not (rgb_image_path and measurements_path): raise gr.Error("الرجاء توفير الصورة الأمامية وملف القياسات على الأقل.") | |
try: rgb_image_pil = Image.open(rgb_image_path).convert("RGB") | |
except Exception as e: raise gr.Error(f"فشل تحميل صورة الكاميرا الأمامية. تأكد من أن الملف صحيح. الخطأ: {e}") | |
def load_optional_image(path, default_image): | |
if path: | |
try: return Image.open(path).convert("RGB") | |
except Exception as e: raise gr.Error(f"فشل تحميل الصورة الاختيارية '{os.path.basename(path)}'. الخطأ: {e}") | |
return default_image | |
rgb_left_pil = load_optional_image(rgb_left_image_path, rgb_image_pil) | |
rgb_right_pil = load_optional_image(rgb_right_image_path, rgb_image_pil) | |
rgb_center_pil = load_optional_image(rgb_center_image_path, rgb_image_pil) | |
if lidar_image_path: | |
try: | |
lidar_array = np.load(lidar_image_path) | |
if lidar_array.max() > 0: lidar_array = (lidar_array / lidar_array.max()) * 255.0 | |
lidar_pil = Image.fromarray(lidar_array.astype(np.uint8)).convert('RGB') | |
except Exception as e: raise gr.Error(f"فشل تحميل ملف الليدار (.npy). تأكد من أن الملف صحيح. الخطأ: {e}") | |
else: lidar_pil = Image.fromarray(np.zeros((112, 112, 3), dtype=np.uint8)) | |
try: | |
with open(measurements_path, 'r') as f: m_dict = json.load(f) | |
except Exception as e: raise gr.Error(f"فشل تحميل أو قراءة ملف القياسات (.json). تأكد من أنه بصيغة صحيحة. الخطأ: {e}") | |
front_tensor = transform(rgb_image_pil).unsqueeze(0).to(device) | |
left_tensor = transform(rgb_left_pil).unsqueeze(0).to(device) | |
right_tensor = transform(rgb_right_pil).unsqueeze(0).to(device) | |
center_tensor = transform(rgb_center_pil).unsqueeze(0).to(device) | |
lidar_tensor = lidar_transform(lidar_pil).unsqueeze(0).to(device) | |
measurements_tensor = torch.tensor([[m_dict.get('x',0.0), m_dict.get('y',0.0), m_dict.get('theta',0.0), m_dict.get('speed',5.0), m_dict.get('steer',0.0), m_dict.get('throttle',0.0), float(m_dict.get('brake',0.0)), m_dict.get('command',2.0), float(m_dict.get('is_junction',0.0)), float(m_dict.get('should_brake',0.0))]], dtype=torch.float32).to(device) | |
target_point_tensor = torch.tensor([target_point_list], dtype=torch.float32).to(device) | |
inputs = {'rgb': front_tensor, 'rgb_left': left_tensor, 'rgb_right': right_tensor, 'rgb_center': center_tensor, 'lidar': lidar_tensor, 'measurements': measurements_tensor, 'target_point': target_point_tensor} | |
with torch.no_grad(): | |
outputs = model_to_use(inputs) | |
traffic, waypoints, is_junction, traffic_light, stop_sign, _ = outputs | |
speed, pos, theta = m_dict.get('speed',5.0), [m_dict.get('x',0.0), m_dict.get('y',0.0)], m_dict.get('theta',0.0) | |
traffic_np, waypoints_np = traffic[0].detach().cpu().numpy().reshape(20,20,-1), waypoints[0].detach().cpu().numpy() * WAYPOINT_SCALE_FACTOR | |
tracker, controller = Tracker(), InterfuserController(ControllerConfig()) | |
updated_traffic = tracker.update_and_predict(traffic_np.copy(), pos, theta, 0) | |
steer, throttle, brake, metadata = controller.run_step(speed, waypoints_np, is_junction.sigmoid()[0,1].item(), traffic_light.sigmoid()[0,0].item(), stop_sign.sigmoid()[0,1].item(), updated_traffic) | |
map_t0, counts_t0 = render(updated_traffic, t=0) | |
map_t1, counts_t1 = render(updated_traffic, t=T1_FUTURE_TIME) | |
map_t2, counts_t2 = render(updated_traffic, t=T2_FUTURE_TIME) | |
wp_map = render_waypoints(waypoints_np) | |
self_car_map = render_self_car(np.array([0,0]), [math.cos(0), math.sin(0)], [4.0, 2.0]) | |
map_t0 = cv2.add(cv2.add(map_t0, wp_map), self_car_map); map_t0 = cv2.resize(map_t0, (400, 400)) | |
map_t1 = cv2.add(ensure_rgb(map_t1), ensure_rgb(self_car_map)); map_t1 = cv2.resize(map_t1, (200, 200)) | |
map_t2 = cv2.add(ensure_rgb(map_t2), ensure_rgb(self_car_map)); map_t2 = cv2.resize(map_t2, (200, 200)) | |
display = DisplayInterface() | |
light_state, stop_sign_state = "Red" if traffic_light.sigmoid()[0,0].item() > 0.5 else "Green", "Yes" if stop_sign.sigmoid()[0,1].item() > 0.5 else "No" | |
interface_data = {'camera_view': np.array(rgb_image_pil),'map_t0': map_t0,'map_t1': map_t1,'map_t2': map_t2, 'text_info': {'Control': f"S:{steer:.2f} T:{throttle:.2f} B:{int(brake)}",'Light': f"L: {light_state}",'Stop': f"St: {stop_sign_state}"}, 'object_counts': {'t0': counts_t0,'t1': counts_t1,'t2': counts_t2}} | |
dashboard_image = display.run_interface(interface_data) | |
control_commands_dict = {"steer": steer, "throttle": throttle, "brake": bool(brake)} | |
return Image.fromarray(dashboard_image), control_commands_dict | |
except gr.Error as e: raise e | |
except Exception as e: | |
print(traceback.format_exc()) | |
raise gr.Error(f"حدث خطأ غير متوقع أثناء معالجة الإطار: {e}") | |
# ------------------------------------------------- | |
##-- 4. تعديل نقطة النهاية المخصصة (API Endpoint) بالتوثيق | |
# ------------------------------------------------- | |
async def flutter_predict_endpoint( | |
rgb_image: UploadFile = File(..., description="صورة الكاميرا الأمامية بصيغة PNG أو JPG."), | |
measurements_json: UploadFile = File(..., description="ملف القياسات الحالي بصيغة JSON."), | |
target_point: str = Form( | |
default='[0.0, 100.0]', | |
description="النقطة المستهدفة كـ JSON string. مثال: '[50.0, 20.0]'" | |
), | |
rgb_left_image: UploadFile = File(None, description="صورة اختيارية من كاميرا اليسار."), | |
rgb_right_image: UploadFile = File(None, description="صورة اختيارية من كاميرا اليمين."), | |
rgb_center_image: UploadFile = File(None, description="صورة اختيارية من كاميرا الوسط."), | |
lidar_data: UploadFile = File(None, description="ملف بيانات الليدار الاختياري بصيغة .npy."), | |
): | |
print("✅ Custom API endpoint /api/predict_flutter called!") | |
async def save_upload_file(upload_file: UploadFile, destination: str): | |
if not upload_file: return None | |
try: | |
with open(destination, "wb") as f: f.write(await upload_file.read()) | |
return destination | |
except Exception as e: raise HTTPException(status_code=500, detail=f"Could not save file: {e}") | |
temp_rgb_path = await save_upload_file(rgb_image, "temp_rgb.png") | |
temp_measurements_path = await save_upload_file(measurements_json, "temp_measurements.json") | |
temp_left_path = await save_upload_file(rgb_left_image, "temp_left.png") | |
temp_right_path = await save_upload_file(rgb_right_image, "temp_right.png") | |
temp_center_path = await save_upload_file(rgb_center_image, "temp_center.png") | |
temp_lidar_path = await save_upload_file(lidar_data, "temp_lidar.npy") | |
try: target_point_list = json.loads(target_point) | |
except json.JSONDecodeError: raise HTTPException(status_code=400, detail="Invalid JSON format for target_point.") | |
try: | |
dashboard_pil, commands_dict = run_single_frame( | |
model_from_state=None, rgb_image_path=temp_rgb_path, rgb_left_image_path=temp_left_path, | |
rgb_right_image_path=temp_right_path, rgb_center_image_path=temp_center_path, | |
lidar_image_path=temp_lidar_path, measurements_path=temp_measurements_path, | |
target_point_list=target_point_list | |
) | |
buffered = io.BytesIO() | |
dashboard_pil.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
print("✅ Model execution successful. Returning commands and Base64 image.") | |
# التأكد من أن الرد يتبع هيكل Pydantic المحدد | |
return PredictionResponse( | |
control_commands=ControlCommands(**commands_dict), | |
dashboard_image_base64=img_str | |
) | |
except gr.Error as e: | |
raise HTTPException(status_code=400, detail=str(e)) | |
except Exception as e: | |
print(traceback.format_exc()) | |
raise HTTPException(status_code=500, detail=f"An internal server error occurred: {e}") | |
finally: | |
for path in [temp_rgb_path, temp_measurements_path, temp_left_path, temp_right_path, temp_center_path, temp_lidar_path]: | |
if path and os.path.exists(path): | |
os.remove(path) | |
# ============================================================================== | |
# 5. تعريف واجهة Gradio (لا تغيير) | |
# ============================================================================== | |
# ... (هذا الجزء يبقى كما هو تمامًا) ... | |
available_models = find_available_models() | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), css=".gradio-container {max-width: 95% !important;}") as demo: | |
model_state = gr.State(value=None) | |
gr.Markdown("# 🚗 محاكاة القيادة الذاتية باستخدام Interfuser") | |
gr.Markdown("مرحباً بك في واجهة اختبار نموذج Interfuser. اتبع الخطوات أدناه لتشغيل المحاكاة على إطار واحد.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(): | |
gr.Markdown("## ⚙️ الخطوة 1: اختر النموذج") | |
with gr.Row(): | |
model_selector = gr.Dropdown(label="النماذج المتاحة", choices=available_models, value=available_models[0] if available_models else "لم يتم العثور على نماذج") | |
status_textbox = gr.Textbox(label="حالة النموذج", interactive=False) | |
with gr.Group(): | |
gr.Markdown("## 🗂️ الخطوة 2: ارفع ملفات السيناريو") | |
with gr.Group(): | |
gr.Markdown("**(مطلوب)**") | |
api_rgb_image_path = gr.File(label="صورة الكاميرا الأمامية (RGB)", type="filepath") | |
api_measurements_path = gr.File(label="ملف القياسات (JSON)", type="filepath") | |
with gr.Accordion("📷 مدخلات اختيارية (كاميرات ومستشعرات إضافية)", open=False): | |
api_rgb_left_image_path = gr.File(label="كاميرا اليسار (RGB)", type="filepath") | |
api_rgb_right_image_path = gr.File(label="كاميرا اليمين (RGB)", type="filepath") | |
api_rgb_center_image_path = gr.File(label="كاميرا الوسط (RGB)", type="filepath") | |
api_lidar_image_path = gr.File(label="بيانات الليدار (NPY)", type="filepath") | |
api_target_point_list = gr.JSON(label="📍 النقطة المستهدفة (x, y)", value=[0.0, 100.0]) | |
api_run_button = gr.Button("🚀 شغل المحاكاة", variant="primary", scale=2) | |
with gr.Group(): | |
gr.Markdown("### ✨ أمثلة جاهزة") | |
gr.Markdown("انقر على مثال لتعبئة الحقول تلقائياً (يتطلب وجود مجلد `examples`).") | |
gr.Examples(examples=[[os.path.join(EXAMPLES_DIR, "sample1", "rgb.jpg"), os.path.join(EXAMPLES_DIR, "sample1", "measurements.json")], [os.path.join(EXAMPLES_DIR, "sample2", "rgb.jpg"), os.path.join(EXAMPLES_DIR, "sample2", "measurements.json")]], inputs=[api_rgb_image_path, api_measurements_path], label="اختر سيناريو اختبار") | |
with gr.Column(scale=2): | |
with gr.Group(): | |
gr.Markdown("## 📊 الخطوة 3: شاهد النتائج") | |
api_output_image = gr.Image(label="لوحة التحكم المرئية (Dashboard)", type="pil", interactive=False) | |
api_control_json = gr.JSON(label="أوامر التحكم (JSON)") | |
if available_models: | |
demo.load(fn=load_model, inputs=model_selector, outputs=[model_state, status_textbox]) | |
model_selector.change(fn=load_model, inputs=model_selector, outputs=[model_state, status_textbox]) | |
api_run_button.click(fn=run_single_frame, inputs=[model_state, api_rgb_image_path, api_rgb_left_image_path, api_rgb_right_image_path, api_rgb_center_image_path, api_lidar_image_path, api_measurements_path, api_target_point_list], outputs=[api_output_image, api_control_json], api_name="run_single_frame") | |
# ============================================================================== | |
# 6. تركيب واجهة Gradio على تطبيق FastAPI | |
# ============================================================================== | |
app = gr.mount_gradio_app(app, demo, path="/") | |
# ============================================================================== | |
# 7. تشغيل الخادم المدمج (نقطة الدخول) | |
# ============================================================================== | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |