Spaces:
Running
Running
File size: 19,248 Bytes
5d7e9a5 a5980f8 5d7e9a5 a5980f8 5d7e9a5 a5980f8 5d7e9a5 a5980f8 5d7e9a5 a5980f8 5d7e9a5 a5980f8 5d7e9a5 a5980f8 5d7e9a5 a5980f8 5d7e9a5 a5980f8 5d7e9a5 7ae1bfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
#!/usr/bin/env python3
"""
PocketFlow-based Gradio GUI for MBTI Personality Questionnaire - V2 with Auto-save and LLM
"""
import sys
import os
import json
import gradio as gr
from datetime import datetime
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from flow import create_mbti_flow, create_shared_store
from utils.questionnaire import load_questionnaire, save_questionnaire
class MBTIPocketFlowApp:
def __init__(self):
self.questions = load_questionnaire()
self.responses = {}
self.shared = None
self.last_report_path = None
self.questionnaire_length = 20
def get_question_text(self, question_idx):
"""Get current question text"""
if 0 <= question_idx < len(self.questions):
q = self.questions[question_idx]
return f"Question {question_idx + 1} of {len(self.questions)}: {q['text']}"
return "All questions completed!"
def get_current_response(self, question_idx):
"""Get current response for question"""
if 0 <= question_idx < len(self.questions):
q_id = self.questions[question_idx]['id']
return self.responses.get(q_id, 3)
return 3
def navigate_question(self, question_idx, direction, current_response):
"""Navigate to previous/next question and auto-save current response"""
# Auto-save current response before navigating
if 0 <= question_idx < len(self.questions):
q_id = self.questions[question_idx]['id']
self.responses[q_id] = current_response
print(f"DEBUG: Saved Q{q_id} = {current_response}")
# Navigate
if direction == "prev":
new_idx = max(0, question_idx - 1)
else: # next
new_idx = min(len(self.questions) - 1, question_idx + 1)
question_text = self.get_question_text(new_idx)
new_response = self.get_current_response(new_idx)
# Update button states
prev_disabled = new_idx == 0
next_disabled = new_idx == len(self.questions) - 1
# Check if all questions answered (after saving current response)
all_answered = len(self.responses) == len(self.questions)
print(f"DEBUG: {len(self.responses)}/{len(self.questions)} answered, all_answered={all_answered}")
return new_idx, question_text, new_response, gr.update(interactive=not prev_disabled), gr.update(
interactive=not next_disabled), gr.update(visible=all_answered)
def change_questionnaire_length(self, length):
"""Change questionnaire length and reset"""
from utils.questionnaire import get_questionnaire_by_length
self.questionnaire_length = length
self.questions = get_questionnaire_by_length(length)
self.responses = {} # Reset responses
# Return to first question
question_text = self.get_question_text(0)
return 0, question_text, 3, gr.update(visible=False)
def save_slider_response(self, question_idx, current_response):
"""Save response when slider changes"""
if 0 <= question_idx < len(self.questions):
q_id = self.questions[question_idx]['id']
self.responses[q_id] = current_response
print(f"DEBUG: Slider saved Q{q_id} = {current_response}")
# Check if all questions answered
all_answered = len(self.responses) == len(self.questions)
return gr.update(visible=all_answered)
def run_pocketflow_analysis_with_save(self, question_idx, current_response):
"""Save current response then run analysis"""
# Save current response before analysis
if 0 <= question_idx < len(self.questions):
q_id = self.questions[question_idx]['id']
self.responses[q_id] = current_response
# Run the analysis
return self.run_pocketflow_analysis()
def save_current_questionnaire(self, question_idx=None, current_response=None):
"""Save current questionnaire state (even if incomplete)"""
# Save current response if provided
if question_idx is not None and current_response is not None and 0 <= question_idx < len(self.questions):
q_id = self.questions[question_idx]['id']
self.responses[q_id] = current_response
if not self.responses:
return None
questionnaire_data = {
"questionnaire": {
"questions": self.questions,
"responses": self.responses
},
"metadata": {
"version": "1.0",
"created_at": datetime.now().isoformat(),
"completed": len(self.responses) == len(self.questions)
}
}
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
answered_count = len(self.responses)
json_filename = f"mbti_questionnaire_pf_partial_{answered_count}q_{timestamp}.json"
saved_path = save_questionnaire(questionnaire_data, json_filename)
if saved_path:
return saved_path
return None
def run_pocketflow_analysis(self):
"""Run complete PocketFlow analysis with LLM"""
if len(self.responses) != len(self.questions):
return "Please answer all questions before analyzing.", "", gr.update(visible=False)
try:
# Create flow and shared store
flow = create_mbti_flow()
config = {
"ui_mode": "gradio",
"output_format": "html",
"analysis_method": "both" # Use both traditional and LLM
}
self.shared = create_shared_store(config)
# Pre-populate responses and current questions
self.shared["questionnaire"]["responses"] = self.responses
self.shared["questionnaire"]["questions"] = self.questions
# Run partial flow (skip question loading/presentation)
from pocketflow import Flow
from nodes import AnalyzeResponsesBatchNode, TraditionalScoringNode, LLMAnalysisNode, DetermineMBTITypeNode, \
GenerateReportNode, ExportDataNode
analyze_responses = AnalyzeResponsesBatchNode()
traditional_scoring = TraditionalScoringNode()
llm_analysis = LLMAnalysisNode()
determine_type = DetermineMBTITypeNode()
generate_report = GenerateReportNode()
export_data = ExportDataNode()
# Connect partial flow
analyze_responses >> traditional_scoring >> llm_analysis >> determine_type >> generate_report >> export_data
analysis_flow = Flow(start=analyze_responses)
# Run the flow
print("Running PocketFlow analysis with LLM...")
analysis_flow.run(self.shared)
# Extract results
mbti_type = self.shared["results"]["mbti_type"]
scores = self.shared["analysis"]["traditional_scores"]
llm_analysis_text = self.shared["analysis"]["llm_analysis"]
report_path = self.shared["exports"]["report_path"]
self.last_report_path = os.path.abspath(report_path)
# Read report HTML
with open(report_path, 'r', encoding='utf-8') as f:
report_html = f.read()
# Extract type info from HTML report for summary
from bs4 import BeautifulSoup
soup = BeautifulSoup(report_html, 'html.parser')
# Get type badge and description
type_badge = soup.find('div', class_='type-badge')
type_desc = soup.find('p').find('em') if soup.find('p') else None
# Get strengths and weaknesses sections
sections = soup.find_all('div', class_='section')
strengths_html = ""
weaknesses_html = ""
careers_html = ""
for section in sections:
h2 = section.find('h2')
if h2:
if 'Strengths' in h2.text:
strengths_html = str(section)
elif 'Growth' in h2.text or 'Areas' in h2.text:
weaknesses_html = str(section)
elif 'Career' in h2.text:
careers_html = str(section)
# Get responses data for the table
responses_data = self.shared["analysis"].get("responses_data", [])
# Generate responses table HTML
responses_table_html = """
<div style="margin: 20px 0;">
<h2 style="color: #333; border-bottom: 2px solid #4CAF50;">Your Question Responses</h2>
<table style="width: 100%; border-collapse: collapse; margin: 10px 0;">
<tr style="background: #f0f0f0;">
<th style="padding: 8px; border: 1px solid #ddd; text-align: left;">Question</th>
<th style="padding: 8px; border: 1px solid #ddd; text-align: center;">Dimension</th>
<th style="padding: 8px; border: 1px solid #ddd; text-align: center;">Your Response</th>
</tr>
"""
for resp in responses_data:
responses_table_html += f"""
<tr id="Q{resp['id']}">
<td style="padding: 8px; border: 1px solid #ddd;"><strong>Q{resp['id']}:</strong> {resp['text']}</td>
<td style="padding: 8px; border: 1px solid #ddd; text-align: center;">{resp['dimension']}</td>
<td style="padding: 8px; border: 1px solid #ddd; text-align: center;"><strong>{resp['response']}</strong></td>
</tr>
"""
responses_table_html += """
</table>
</div>
"""
# Create HTML report sections
report_sections_html = f"""
<div style="font-family: Arial, sans-serif; line-height: 1.6;">
<div style="text-align: center; margin-bottom: 30px;">
<h1>Your Personality Analysis</h1>
{str(type_badge) if type_badge else f'<div style="background: #4CAF50; color: white; padding: 10px 20px; border-radius: 5px; display: inline-block;">{mbti_type}</div>'}
{f'<p><em>{type_desc.text}</em></p>' if type_desc else ''}
</div>
{responses_table_html}
{strengths_html}
{weaknesses_html}
{careers_html}
<div style="margin: 20px 0;">
<h2 style="color: #333; border-bottom: 2px solid #4CAF50;">Traditional Dimension Scores</h2>
<ul>
"""
pairs = [('E', 'I'), ('S', 'N'), ('T', 'F'), ('J', 'P')]
for dim1, dim2 in pairs:
score1 = scores.get(f'{dim1}_score', 0.5)
score2 = scores.get(f'{dim2}_score', 0.5)
stronger = dim1 if score1 > score2 else dim2
percentage = max(score1, score2) * 100
report_sections_html += f"<li><strong>{dim1}/{dim2}</strong>: {stronger} ({percentage:.1f}%)</li>"
report_sections_html += """
</ul>
</div>
</div>
"""
# Format AI analysis as markdown
ai_analysis_md = f"""
## π§ AI Analysis
{llm_analysis_text}
---
*Complete questionnaire and report saved via PocketFlow pipeline*
"""
return report_sections_html, ai_analysis_md, gr.update(visible=True)
except Exception as e:
error_msg = f"Error in PocketFlow analysis: {e}"
print(error_msg)
import traceback
traceback.print_exc()
return error_msg, "", gr.update(visible=False)
def load_questionnaire_file(self, file):
"""Load questionnaire from uploaded file"""
if file is None:
return "No file uploaded.", 0, self.get_question_text(0), 3
try:
with open(file.name, 'r', encoding='utf-8') as f:
data = json.load(f)
if 'questionnaire' in data and 'responses' in data['questionnaire']:
# Load both questions and responses
if 'questions' in data['questionnaire']:
self.questions = data['questionnaire']['questions']
self.responses = data['questionnaire']['responses']
# Convert string keys to int keys
self.responses = {int(k): v for k, v in self.responses.items()}
# Start from first question
question_text = self.get_question_text(0)
current_response = self.get_current_response(0)
return f"Loaded questionnaire with {len(self.responses)} responses.", 0, question_text, current_response
else:
return "Invalid questionnaire file format.", 0, self.get_question_text(0), 3
except Exception as e:
return f"Error loading file: {e}", 0, self.get_question_text(0), 3
def reset_questionnaire(self):
"""Reset questionnaire to start over"""
self.responses = {}
self.shared = None
self.last_report_path = None
return "", 0, self.get_question_text(0), 3, gr.update(visible=False), "", "", gr.update(
interactive=False), gr.update(interactive=True), gr.update(visible=False)
def create_pocketflow_gradio_app():
"""Create PocketFlow Gradio interface"""
app = MBTIPocketFlowApp()
with gr.Blocks(title="MBTI Questionnaire - PocketFlow with LLM") as demo:
gr.Markdown("# MBTI Personality Questionnaire (PocketFlow + LLM)")
gr.Markdown("Powered by PocketFlow architecture with complete node pipeline and AI analysis")
# Questionnaire length selection
with gr.Row():
length_radio = gr.Radio(
choices=[20, 40, 60],
value=20,
label="Questionnaire Length",
info="Choose the number of questions (more questions = more accurate results)"
)
# File upload section
upload_file = gr.File(label="Load Previous Questionnaire (JSON)", file_types=[".json"])
load_status = gr.Textbox(label="Load Status", interactive=False)
# Question section
question_idx = gr.State(0)
question_text = gr.Textbox(
label="Question",
value=app.get_question_text(0),
interactive=False
)
with gr.Row():
response_slider = gr.Slider(
minimum=1, maximum=5, step=1, value=3,
label="Your Response (1=Strongly Disagree, 5=Strongly Agree)"
)
# Navigation buttons
with gr.Row():
prev_btn = gr.Button("β Previous", interactive=False)
next_btn = gr.Button("Next β")
# Export and control buttons
with gr.Row():
export_btn = gr.Button("πΎ Export Current Progress", variant="secondary")
reset_btn = gr.Button("Reset Questionnaire")
# File output for export
export_file_output = gr.File(label="Download Questionnaire", visible=False)
# Analysis section
with gr.Column(visible=False) as analyze_section:
analyze_btn = gr.Button("π§ Analyze with PocketFlow + LLM", variant="primary")
analysis_status = gr.Markdown("*This will run the complete PocketFlow pipeline with AI analysis*")
# Results section
with gr.Column(visible=False) as results_section:
report_display = gr.HTML()
ai_analysis_display = gr.Markdown()
# Download report button
download_report_btn = gr.Button("π Download Report", visible=False)
# File output for report download
report_file_output = gr.File(label="Download Report", visible=False)
# Event handlers
length_radio.change(
app.change_questionnaire_length,
inputs=[length_radio],
outputs=[question_idx, question_text, response_slider, analyze_section]
)
upload_file.upload(
app.load_questionnaire_file,
inputs=[upload_file],
outputs=[load_status, question_idx, question_text, response_slider]
)
prev_btn.click(
lambda idx, resp: app.navigate_question(idx, "prev", resp),
inputs=[question_idx, response_slider],
outputs=[question_idx, question_text, response_slider, prev_btn, next_btn, analyze_section]
)
next_btn.click(
lambda idx, resp: app.navigate_question(idx, "next", resp),
inputs=[question_idx, response_slider],
outputs=[question_idx, question_text, response_slider, prev_btn, next_btn, analyze_section]
)
# Export current progress
def export_handler(idx, resp):
# Save current response and create file
file_path = app.save_current_questionnaire(idx, resp)
print(f"DEBUG: Export file path: {file_path}")
if file_path:
return gr.update(value=file_path, visible=True)
return gr.update()
export_btn.click(
export_handler,
inputs=[question_idx, response_slider],
outputs=[export_file_output]
)
analyze_btn.click(
lambda: (gr.update(interactive=False, value="β³ Analyzing..."),
"π **Running PocketFlow analysis with LLM... This may take a moment.**"),
outputs=[analyze_btn, analysis_status]
).then(
app.run_pocketflow_analysis_with_save,
inputs=[question_idx, response_slider],
outputs=[report_display, ai_analysis_display, download_report_btn]
).then(
lambda: (gr.update(visible=True), gr.update(interactive=True, value="π§ Analyze with PocketFlow + LLM"),
"β
**Analysis complete!**"),
outputs=[results_section, analyze_btn, analysis_status]
)
# Download report
def report_download_handler():
if app.last_report_path:
return gr.update(value=app.last_report_path, visible=True)
return gr.update()
download_report_btn.click(
report_download_handler,
outputs=[report_file_output]
)
# Auto-save when slider changes and check for analysis button
response_slider.change(
app.save_slider_response,
inputs=[question_idx, response_slider],
outputs=[analyze_section]
)
reset_btn.click(
app.reset_questionnaire,
outputs=[load_status, question_idx, question_text, response_slider, analyze_section, report_display,
prev_btn, next_btn, download_report_btn]
).then(
lambda: gr.update(visible=False),
outputs=[results_section]
)
return demo
if __name__ == "__main__":
demo = create_pocketflow_gradio_app()
demo.launch(ssr_mode=False)
|