File size: 19,248 Bytes
5d7e9a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5980f8
5d7e9a5
a5980f8
5d7e9a5
 
 
a5980f8
5d7e9a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5980f8
 
5d7e9a5
 
 
 
 
 
 
 
 
 
 
 
 
 
a5980f8
 
5d7e9a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5980f8
 
 
5d7e9a5
 
 
 
a5980f8
5d7e9a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5980f8
 
 
 
 
5d7e9a5
a5980f8
 
5d7e9a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae1bfc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
#!/usr/bin/env python3
"""
PocketFlow-based Gradio GUI for MBTI Personality Questionnaire - V2 with Auto-save and LLM
"""

import sys
import os
import json
import gradio as gr
from datetime import datetime

sys.path.append(os.path.join(os.path.dirname(__file__), '..'))

from flow import create_mbti_flow, create_shared_store
from utils.questionnaire import load_questionnaire, save_questionnaire


class MBTIPocketFlowApp:
    def __init__(self):
        self.questions = load_questionnaire()
        self.responses = {}
        self.shared = None
        self.last_report_path = None
        self.questionnaire_length = 20

    def get_question_text(self, question_idx):
        """Get current question text"""
        if 0 <= question_idx < len(self.questions):
            q = self.questions[question_idx]
            return f"Question {question_idx + 1} of {len(self.questions)}: {q['text']}"
        return "All questions completed!"

    def get_current_response(self, question_idx):
        """Get current response for question"""
        if 0 <= question_idx < len(self.questions):
            q_id = self.questions[question_idx]['id']
            return self.responses.get(q_id, 3)
        return 3

    def navigate_question(self, question_idx, direction, current_response):
        """Navigate to previous/next question and auto-save current response"""
        # Auto-save current response before navigating
        if 0 <= question_idx < len(self.questions):
            q_id = self.questions[question_idx]['id']
            self.responses[q_id] = current_response
            print(f"DEBUG: Saved Q{q_id} = {current_response}")

        # Navigate
        if direction == "prev":
            new_idx = max(0, question_idx - 1)
        else:  # next
            new_idx = min(len(self.questions) - 1, question_idx + 1)

        question_text = self.get_question_text(new_idx)
        new_response = self.get_current_response(new_idx)

        # Update button states
        prev_disabled = new_idx == 0
        next_disabled = new_idx == len(self.questions) - 1

        # Check if all questions answered (after saving current response)
        all_answered = len(self.responses) == len(self.questions)
        print(f"DEBUG: {len(self.responses)}/{len(self.questions)} answered, all_answered={all_answered}")

        return new_idx, question_text, new_response, gr.update(interactive=not prev_disabled), gr.update(
            interactive=not next_disabled), gr.update(visible=all_answered)

    def change_questionnaire_length(self, length):
        """Change questionnaire length and reset"""
        from utils.questionnaire import get_questionnaire_by_length

        self.questionnaire_length = length
        self.questions = get_questionnaire_by_length(length)
        self.responses = {}  # Reset responses

        # Return to first question
        question_text = self.get_question_text(0)
        return 0, question_text, 3, gr.update(visible=False)

    def save_slider_response(self, question_idx, current_response):
        """Save response when slider changes"""
        if 0 <= question_idx < len(self.questions):
            q_id = self.questions[question_idx]['id']
            self.responses[q_id] = current_response
            print(f"DEBUG: Slider saved Q{q_id} = {current_response}")

        # Check if all questions answered
        all_answered = len(self.responses) == len(self.questions)
        return gr.update(visible=all_answered)

    def run_pocketflow_analysis_with_save(self, question_idx, current_response):
        """Save current response then run analysis"""
        # Save current response before analysis
        if 0 <= question_idx < len(self.questions):
            q_id = self.questions[question_idx]['id']
            self.responses[q_id] = current_response

        # Run the analysis
        return self.run_pocketflow_analysis()

    def save_current_questionnaire(self, question_idx=None, current_response=None):
        """Save current questionnaire state (even if incomplete)"""
        # Save current response if provided
        if question_idx is not None and current_response is not None and 0 <= question_idx < len(self.questions):
            q_id = self.questions[question_idx]['id']
            self.responses[q_id] = current_response

        if not self.responses:
            return None

        questionnaire_data = {
            "questionnaire": {
                "questions": self.questions,
                "responses": self.responses
            },
            "metadata": {
                "version": "1.0",
                "created_at": datetime.now().isoformat(),
                "completed": len(self.responses) == len(self.questions)
            }
        }

        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
        answered_count = len(self.responses)
        json_filename = f"mbti_questionnaire_pf_partial_{answered_count}q_{timestamp}.json"

        saved_path = save_questionnaire(questionnaire_data, json_filename)
        if saved_path:
            return saved_path
        return None

    def run_pocketflow_analysis(self):
        """Run complete PocketFlow analysis with LLM"""
        if len(self.responses) != len(self.questions):
            return "Please answer all questions before analyzing.", "", gr.update(visible=False)

        try:
            # Create flow and shared store
            flow = create_mbti_flow()
            config = {
                "ui_mode": "gradio",
                "output_format": "html",
                "analysis_method": "both"  # Use both traditional and LLM
            }
            self.shared = create_shared_store(config)

            # Pre-populate responses and current questions
            self.shared["questionnaire"]["responses"] = self.responses
            self.shared["questionnaire"]["questions"] = self.questions

            # Run partial flow (skip question loading/presentation)
            from pocketflow import Flow
            from nodes import AnalyzeResponsesBatchNode, TraditionalScoringNode, LLMAnalysisNode, DetermineMBTITypeNode, \
                GenerateReportNode, ExportDataNode

            analyze_responses = AnalyzeResponsesBatchNode()
            traditional_scoring = TraditionalScoringNode()
            llm_analysis = LLMAnalysisNode()
            determine_type = DetermineMBTITypeNode()
            generate_report = GenerateReportNode()
            export_data = ExportDataNode()

            # Connect partial flow
            analyze_responses >> traditional_scoring >> llm_analysis >> determine_type >> generate_report >> export_data
            analysis_flow = Flow(start=analyze_responses)

            # Run the flow
            print("Running PocketFlow analysis with LLM...")
            analysis_flow.run(self.shared)

            # Extract results
            mbti_type = self.shared["results"]["mbti_type"]
            scores = self.shared["analysis"]["traditional_scores"]
            llm_analysis_text = self.shared["analysis"]["llm_analysis"]
            report_path = self.shared["exports"]["report_path"]

            self.last_report_path = os.path.abspath(report_path)

            # Read report HTML
            with open(report_path, 'r', encoding='utf-8') as f:
                report_html = f.read()

            # Extract type info from HTML report for summary
            from bs4 import BeautifulSoup
            soup = BeautifulSoup(report_html, 'html.parser')

            # Get type badge and description
            type_badge = soup.find('div', class_='type-badge')
            type_desc = soup.find('p').find('em') if soup.find('p') else None

            # Get strengths and weaknesses sections
            sections = soup.find_all('div', class_='section')
            strengths_html = ""
            weaknesses_html = ""
            careers_html = ""

            for section in sections:
                h2 = section.find('h2')
                if h2:
                    if 'Strengths' in h2.text:
                        strengths_html = str(section)
                    elif 'Growth' in h2.text or 'Areas' in h2.text:
                        weaknesses_html = str(section)
                    elif 'Career' in h2.text:
                        careers_html = str(section)

            # Get responses data for the table
            responses_data = self.shared["analysis"].get("responses_data", [])

            # Generate responses table HTML
            responses_table_html = """
            <div style="margin: 20px 0;">
                <h2 style="color: #333; border-bottom: 2px solid #4CAF50;">Your Question Responses</h2>
                <table style="width: 100%; border-collapse: collapse; margin: 10px 0;">
                    <tr style="background: #f0f0f0;">
                        <th style="padding: 8px; border: 1px solid #ddd; text-align: left;">Question</th>
                        <th style="padding: 8px; border: 1px solid #ddd; text-align: center;">Dimension</th>
                        <th style="padding: 8px; border: 1px solid #ddd; text-align: center;">Your Response</th>
                    </tr>
            """

            for resp in responses_data:
                responses_table_html += f"""
                    <tr id="Q{resp['id']}">
                        <td style="padding: 8px; border: 1px solid #ddd;"><strong>Q{resp['id']}:</strong> {resp['text']}</td>
                        <td style="padding: 8px; border: 1px solid #ddd; text-align: center;">{resp['dimension']}</td>
                        <td style="padding: 8px; border: 1px solid #ddd; text-align: center;"><strong>{resp['response']}</strong></td>
                    </tr>
                """

            responses_table_html += """
                </table>
            </div>
            """

            # Create HTML report sections
            report_sections_html = f"""
            <div style="font-family: Arial, sans-serif; line-height: 1.6;">
                <div style="text-align: center; margin-bottom: 30px;">
                    <h1>Your Personality Analysis</h1>
                    {str(type_badge) if type_badge else f'<div style="background: #4CAF50; color: white; padding: 10px 20px; border-radius: 5px; display: inline-block;">{mbti_type}</div>'}
                    {f'<p><em>{type_desc.text}</em></p>' if type_desc else ''}
                </div>

                {responses_table_html}

                {strengths_html}
                {weaknesses_html}
                {careers_html}

                <div style="margin: 20px 0;">
                    <h2 style="color: #333; border-bottom: 2px solid #4CAF50;">Traditional Dimension Scores</h2>
                    <ul>
            """

            pairs = [('E', 'I'), ('S', 'N'), ('T', 'F'), ('J', 'P')]
            for dim1, dim2 in pairs:
                score1 = scores.get(f'{dim1}_score', 0.5)
                score2 = scores.get(f'{dim2}_score', 0.5)
                stronger = dim1 if score1 > score2 else dim2
                percentage = max(score1, score2) * 100
                report_sections_html += f"<li><strong>{dim1}/{dim2}</strong>: {stronger} ({percentage:.1f}%)</li>"

            report_sections_html += """
                    </ul>
                </div>
            </div>
            """

            # Format AI analysis as markdown
            ai_analysis_md = f"""
## 🧠 AI Analysis

{llm_analysis_text}

---
*Complete questionnaire and report saved via PocketFlow pipeline*
            """

            return report_sections_html, ai_analysis_md, gr.update(visible=True)

        except Exception as e:
            error_msg = f"Error in PocketFlow analysis: {e}"
            print(error_msg)
            import traceback
            traceback.print_exc()
            return error_msg, "", gr.update(visible=False)

    def load_questionnaire_file(self, file):
        """Load questionnaire from uploaded file"""
        if file is None:
            return "No file uploaded.", 0, self.get_question_text(0), 3

        try:
            with open(file.name, 'r', encoding='utf-8') as f:
                data = json.load(f)

            if 'questionnaire' in data and 'responses' in data['questionnaire']:
                # Load both questions and responses
                if 'questions' in data['questionnaire']:
                    self.questions = data['questionnaire']['questions']

                self.responses = data['questionnaire']['responses']
                # Convert string keys to int keys
                self.responses = {int(k): v for k, v in self.responses.items()}

                # Start from first question
                question_text = self.get_question_text(0)
                current_response = self.get_current_response(0)

                return f"Loaded questionnaire with {len(self.responses)} responses.", 0, question_text, current_response
            else:
                return "Invalid questionnaire file format.", 0, self.get_question_text(0), 3

        except Exception as e:
            return f"Error loading file: {e}", 0, self.get_question_text(0), 3

    def reset_questionnaire(self):
        """Reset questionnaire to start over"""
        self.responses = {}
        self.shared = None
        self.last_report_path = None
        return "", 0, self.get_question_text(0), 3, gr.update(visible=False), "", "", gr.update(
            interactive=False), gr.update(interactive=True), gr.update(visible=False)


def create_pocketflow_gradio_app():
    """Create PocketFlow Gradio interface"""
    app = MBTIPocketFlowApp()

    with gr.Blocks(title="MBTI Questionnaire - PocketFlow with LLM") as demo:
        gr.Markdown("# MBTI Personality Questionnaire (PocketFlow + LLM)")
        gr.Markdown("Powered by PocketFlow architecture with complete node pipeline and AI analysis")

        # Questionnaire length selection
        with gr.Row():
            length_radio = gr.Radio(
                choices=[20, 40, 60],
                value=20,
                label="Questionnaire Length",
                info="Choose the number of questions (more questions = more accurate results)"
            )

        # File upload section
        upload_file = gr.File(label="Load Previous Questionnaire (JSON)", file_types=[".json"])
        load_status = gr.Textbox(label="Load Status", interactive=False)

        # Question section
        question_idx = gr.State(0)
        question_text = gr.Textbox(
            label="Question",
            value=app.get_question_text(0),
            interactive=False
        )

        with gr.Row():
            response_slider = gr.Slider(
                minimum=1, maximum=5, step=1, value=3,
                label="Your Response (1=Strongly Disagree, 5=Strongly Agree)"
            )

        # Navigation buttons
        with gr.Row():
            prev_btn = gr.Button("← Previous", interactive=False)
            next_btn = gr.Button("Next β†’")

        # Export and control buttons
        with gr.Row():
            export_btn = gr.Button("πŸ’Ύ Export Current Progress", variant="secondary")
            reset_btn = gr.Button("Reset Questionnaire")

        # File output for export
        export_file_output = gr.File(label="Download Questionnaire", visible=False)

        # Analysis section
        with gr.Column(visible=False) as analyze_section:
            analyze_btn = gr.Button("🧠 Analyze with PocketFlow + LLM", variant="primary")
            analysis_status = gr.Markdown("*This will run the complete PocketFlow pipeline with AI analysis*")

        # Results section
        with gr.Column(visible=False) as results_section:
            report_display = gr.HTML()
            ai_analysis_display = gr.Markdown()

            # Download report button
            download_report_btn = gr.Button("πŸ“Š Download Report", visible=False)

        # File output for report download
        report_file_output = gr.File(label="Download Report", visible=False)

        # Event handlers
        length_radio.change(
            app.change_questionnaire_length,
            inputs=[length_radio],
            outputs=[question_idx, question_text, response_slider, analyze_section]
        )

        upload_file.upload(
            app.load_questionnaire_file,
            inputs=[upload_file],
            outputs=[load_status, question_idx, question_text, response_slider]
        )

        prev_btn.click(
            lambda idx, resp: app.navigate_question(idx, "prev", resp),
            inputs=[question_idx, response_slider],
            outputs=[question_idx, question_text, response_slider, prev_btn, next_btn, analyze_section]
        )

        next_btn.click(
            lambda idx, resp: app.navigate_question(idx, "next", resp),
            inputs=[question_idx, response_slider],
            outputs=[question_idx, question_text, response_slider, prev_btn, next_btn, analyze_section]
        )

        # Export current progress
        def export_handler(idx, resp):
            # Save current response and create file
            file_path = app.save_current_questionnaire(idx, resp)
            print(f"DEBUG: Export file path: {file_path}")
            if file_path:
                return gr.update(value=file_path, visible=True)
            return gr.update()

        export_btn.click(
            export_handler,
            inputs=[question_idx, response_slider],
            outputs=[export_file_output]
        )

        analyze_btn.click(
            lambda: (gr.update(interactive=False, value="⏳ Analyzing..."),
                     "πŸ”„ **Running PocketFlow analysis with LLM... This may take a moment.**"),
            outputs=[analyze_btn, analysis_status]
        ).then(
            app.run_pocketflow_analysis_with_save,
            inputs=[question_idx, response_slider],
            outputs=[report_display, ai_analysis_display, download_report_btn]
        ).then(
            lambda: (gr.update(visible=True), gr.update(interactive=True, value="🧠 Analyze with PocketFlow + LLM"),
                     "βœ… **Analysis complete!**"),
            outputs=[results_section, analyze_btn, analysis_status]
        )

        # Download report
        def report_download_handler():
            if app.last_report_path:
                return gr.update(value=app.last_report_path, visible=True)
            return gr.update()

        download_report_btn.click(
            report_download_handler,
            outputs=[report_file_output]
        )

        # Auto-save when slider changes and check for analysis button
        response_slider.change(
            app.save_slider_response,
            inputs=[question_idx, response_slider],
            outputs=[analyze_section]
        )

        reset_btn.click(
            app.reset_questionnaire,
            outputs=[load_status, question_idx, question_text, response_slider, analyze_section, report_display,
                     prev_btn, next_btn, download_report_btn]
        ).then(
            lambda: gr.update(visible=False),
            outputs=[results_section]
        )

    return demo


if __name__ == "__main__":
    demo = create_pocketflow_gradio_app()
    demo.launch(ssr_mode=False)