File size: 8,048 Bytes
5bc1cd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf3b3f7
 
 
 
 
 
 
 
 
 
ed8566f
5bc1cd2
bf3b3f7
 
 
 
 
 
 
 
5bc1cd2
bf3b3f7
5bc1cd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8566f
5bc1cd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d57e3a0
5bc1cd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import FluxKontextPipeline

from huggingface_hub import HfFileSystem, ModelCard
import copy
import random
import time

import subprocess
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)

from huggingface_hub import login
hf_token = os.environ.get("HF_TOKEN_GATED")
login(token=hf_token)

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-Kontext-dev"

pipe = FluxKontextPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)

MAX_SEED = 2**32-1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def update_selection(evt: gr.SelectData, default_scale, lora_scale):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    prompt = selected_lora["prompt"]
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    if default_scale:
        lora_scale = selected_lora["lora_scale"]
    return (
        prompt,
        updated_text,
        evt.index,
        lora_scale,
    )

@spaces.GPU
def generate_image(input_image, prompt_mash, steps, seed, cfg_scale, lora_scale, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    with calculateDuration("Generating image"):
        # Generate image
        for img in pipe(
            image=input_image,
            prompt=prompt_mash,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            generator=generator,
            joint_attention_kwargs={"scale": lora_scale},
            output_type="pil",
        ):
            yield img

@spaces.GPU
def run_lora(input_image, prompt, cfg_scale, steps, selected_index, randomize_seed, seed, lora_scale, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.")
    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]
    if(trigger_word):
        if "trigger_position" in selected_lora:
            if selected_lora["trigger_position"] == "prepend" and trigger_word != prompt:
                prompt_mash = f"{trigger_word} {prompt}"
            else:
                if trigger_word != prompt:
                    prompt_mash = f"{prompt} {trigger_word}"
                else:
                    prompt_mash = prompt
        else:
            prompt_mash = f"{trigger_word} {prompt}"
    else:
        prompt_mash = prompt

    with calculateDuration("Unloading LoRA"):
        pipe.unload_lora_weights()
        
    # Load LoRA weights
    with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
        if "weights" in selected_lora:
            pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
        else:
            pipe.load_lora_weights(lora_path)

    # Set random seed for reproducibility
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)

    # image_generator = generate_image(input_image, prompt_mash, steps, seed, cfg_scale, lora_scale, progress)

    generator = torch.Generator(device="cuda").manual_seed(seed)
    final_image =  pipe(
        image=input_image,
        prompt=prompt_mash,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    # # Consume the generator to get the final image
    # final_image = None
    # step_counter = 0
    # for image in image_generator:
    #     step_counter+=1
    #     final_image = image
    #     progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
    #     yield image, seed, gr.update(value=progress_bar, visible=True)
        
    yield final_image, seed, gr.update(visible=True)

css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
    title = gr.HTML(
        """<h1><img src="https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-collections/resolve/main/logo.png" alt="LoRA"> FLUX Kontext LoRA Gallery from Shakker AI</h1>""",
        elem_id="title",
    )
    selected_index = gr.State(None)
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Please select a LoRA by clicking")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column():
            selected_info = gr.Markdown("")
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=3,
                elem_id="gallery"
            )
    with gr.Row():
        with gr.Column():
            image_in = gr.Image(label="Upload the image for editing", type="pil")
        
        with gr.Column():
            progress_bar = gr.Markdown(elem_id="progress",visible=False)
            result = gr.Image(label="Generated Image",show_label=False,interactive=False)

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=2.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)

                    default_scale = gr.Checkbox(True, label="Use default LoRA scale")
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=1.0)

    gallery.select(
        update_selection,
        inputs=[default_scale, lora_scale],
        outputs=[prompt, selected_info, selected_index, lora_scale]
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[image_in, prompt, cfg_scale, steps, selected_index, randomize_seed, seed, lora_scale],
        outputs=[result, seed, progress_bar]
    )

app.queue()
app.launch()