import os import gradio as gr import json import logging import torch from PIL import Image import spaces from diffusers import FluxKontextPipeline from huggingface_hub import HfFileSystem, ModelCard import copy import random import time import subprocess subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) from huggingface_hub import login hf_token = os.environ.get("HF_TOKEN_GATED") login(token=hf_token) # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) # Initialize the base model dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "black-forest-labs/FLUX.1-Kontext-dev" pipe = FluxKontextPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device) MAX_SEED = 2**32-1 class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def update_selection(evt: gr.SelectData, default_scale, lora_scale): selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" prompt = selected_lora["prompt"] lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" if default_scale: lora_scale = selected_lora["lora_scale"] return ( prompt, updated_text, evt.index, lora_scale, ) @spaces.GPU def generate_image(input_image, prompt_mash, steps, seed, cfg_scale, lora_scale, progress): pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image for img in pipe( image=input_image, prompt=prompt_mash, num_inference_steps=steps, guidance_scale=cfg_scale, generator=generator, joint_attention_kwargs={"scale": lora_scale}, output_type="pil", ): yield img @spaces.GPU def run_lora(input_image, prompt, cfg_scale, steps, selected_index, randomize_seed, seed, lora_scale, progress=gr.Progress(track_tqdm=True)): if selected_index is None: raise gr.Error("You must select a LoRA before proceeding.") selected_lora = loras[selected_index] lora_path = selected_lora["repo"] trigger_word = selected_lora["trigger_word"] if(trigger_word): if "trigger_position" in selected_lora: if selected_lora["trigger_position"] == "prepend" and trigger_word != prompt: prompt_mash = f"{trigger_word} {prompt}" else: if trigger_word != prompt: prompt_mash = f"{prompt} {trigger_word}" else: prompt_mash = prompt else: prompt_mash = f"{trigger_word} {prompt}" else: prompt_mash = prompt with calculateDuration("Unloading LoRA"): pipe.unload_lora_weights() # Load LoRA weights with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): if "weights" in selected_lora: pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) else: pipe.load_lora_weights(lora_path) # Set random seed for reproducibility with calculateDuration("Randomizing seed"): if randomize_seed: seed = random.randint(0, MAX_SEED) # image_generator = generate_image(input_image, prompt_mash, steps, seed, cfg_scale, lora_scale, progress) generator = torch.Generator(device="cuda").manual_seed(seed) final_image = pipe( image=input_image, prompt=prompt_mash, num_inference_steps=steps, guidance_scale=cfg_scale, generator=generator, joint_attention_kwargs={"scale": lora_scale}, ).images[0] # # Consume the generator to get the final image # final_image = None # step_counter = 0 # for image in image_generator: # step_counter+=1 # final_image = image # progress_bar = f'