import gradio as gr from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch model_id = "Fazzie/PokemonGAI" device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) print("load model successfully!") pipe = pipe.to(device) def imagen(inputs): prompt = inputs negative_prompt = 'pixelated, distorted' print("start inference") image = pipe(prompt=inputs, negative_prompt=negative_prompt).images[0] print("finish inference!") return image demo = gr.Interface(fn=imagen, inputs=[gr.Textbox(label = 'Prompt')], outputs="image") if __name__ == "__main__": demo.launch() image.save("1.png") # gr.Interface.load("models/Fazzie/PokemonGAI").launch()