|
import streamlit as st |
|
from lida import Manager, TextGenerationConfig, llm |
|
from lida.datamodel import Goal |
|
import os |
|
import pandas as pd |
|
|
|
|
|
|
|
os.makedirs("data", exist_ok=True) |
|
|
|
st.set_page_config( |
|
page_title="LIDA: Automatic Generation of Visualizations and Infographics", |
|
page_icon="π", |
|
) |
|
|
|
st.write("# LIDA: Automatic Generation of Visualizations and Infographics using Large Language Models π") |
|
|
|
st.sidebar.write("## Setup") |
|
|
|
|
|
openai_key = os.getenv("OPENAI_API_KEY") |
|
|
|
if not openai_key: |
|
openai_key = st.sidebar.text_input("Enter OpenAI API key:") |
|
if openai_key: |
|
display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:] |
|
st.sidebar.write(f"Current key: {display_key}") |
|
else: |
|
st.sidebar.write("Please enter OpenAI API key.") |
|
else: |
|
display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:] |
|
st.sidebar.write(f"OpenAI API key loaded from environment variable: {display_key}") |
|
|
|
st.markdown( |
|
""" |
|
LIDA is a library for generating data visualizations and data-faithful infographics. |
|
LIDA is grammar agnostic (will work with any programming language and visualization |
|
libraries e.g. matplotlib, seaborn, altair, d3 etc) and works with multiple large language |
|
model providers (OpenAI, Azure OpenAI, PaLM, Cohere, Huggingface). Details on the components |
|
of LIDA are described in the [paper here](https://arxiv.org/abs/2303.02927) and in this |
|
tutorial [notebook](notebooks/tutorial.ipynb). See the project page [here](https://microsoft.github.io/lida/) for updates!. |
|
|
|
This demo shows how to use the LIDA python api with Streamlit. [More](/about). |
|
|
|
---- |
|
""") |
|
|
|
|
|
if openai_key: |
|
|
|
selected_dataset = None |
|
|
|
|
|
st.sidebar.write("## Text Generation Model") |
|
models = ["gpt-4", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"] |
|
selected_model = st.sidebar.selectbox( |
|
'Choose a model', |
|
options=models, |
|
index=0 |
|
) |
|
|
|
|
|
|
|
temperature = st.sidebar.slider( |
|
"Temperature", |
|
min_value=0.0, |
|
max_value=1.0, |
|
value=0.0) |
|
|
|
|
|
use_cache = st.sidebar.checkbox("Use cache", value=True) |
|
|
|
|
|
st.sidebar.write("## Data Summarization") |
|
st.sidebar.write("### Choose a dataset") |
|
|
|
datasets = [ |
|
{"label": "Select a dataset", "url": None}, |
|
{"label": "Cars", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/cars.csv"}, |
|
{"label": "Weather", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/weather.json"}, |
|
] |
|
|
|
selected_dataset_label = st.sidebar.selectbox( |
|
'Choose a dataset', |
|
options=[dataset["label"] for dataset in datasets], |
|
index=0 |
|
) |
|
|
|
upload_own_data = st.sidebar.checkbox("Upload your own data") |
|
|
|
if upload_own_data: |
|
uploaded_file = st.sidebar.file_uploader("Choose a CSV or JSON file", type=["csv", "json"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
file_name, file_extension = os.path.splitext(uploaded_file.name) |
|
|
|
|
|
if file_extension.lower() == ".csv": |
|
data = pd.read_csv(uploaded_file) |
|
elif file_extension.lower() == ".json": |
|
data = pd.read_json(uploaded_file) |
|
|
|
|
|
uploaded_file_path = os.path.join("data", uploaded_file.name) |
|
data.to_csv(uploaded_file_path, index=False) |
|
|
|
selected_dataset = uploaded_file_path |
|
|
|
datasets.append({"label": file_name, "url": uploaded_file_path}) |
|
|
|
|
|
else: |
|
selected_dataset = datasets[[dataset["label"] |
|
for dataset in datasets].index(selected_dataset_label)]["url"] |
|
|
|
if not selected_dataset: |
|
st.info("To continue, select a dataset from the sidebar on the left or upload your own.") |
|
|
|
st.sidebar.write("### Choose a summarization method") |
|
|
|
summarization_methods = [ |
|
{"label": "llm", |
|
"description": |
|
"Uses the LLM to generate annotate the default summary, adding details such as semantic types for columns and dataset description"}, |
|
{"label": "default", |
|
"description": "Uses dataset column statistics and column names as the summary"}, |
|
|
|
{"label": "columns", "description": "Uses the dataset column names as the summary"}] |
|
|
|
|
|
selected_method_label = st.sidebar.selectbox( |
|
'Choose a method', |
|
options=[method["label"] for method in summarization_methods], |
|
index=0 |
|
) |
|
|
|
selected_method = summarization_methods[[ |
|
method["label"] for method in summarization_methods].index(selected_method_label)]["label"] |
|
|
|
|
|
selected_summary_method_description = summarization_methods[[ |
|
method["label"] for method in summarization_methods].index(selected_method_label)]["description"] |
|
|
|
if selected_method: |
|
st.sidebar.markdown( |
|
f"<span> {selected_summary_method_description} </span>", |
|
unsafe_allow_html=True) |
|
|
|
|
|
if openai_key and selected_dataset and selected_method: |
|
lida = Manager(text_gen=llm("openai", api_key=openai_key)) |
|
textgen_config = TextGenerationConfig( |
|
n=1, |
|
temperature=temperature, |
|
model=selected_model, |
|
use_cache=use_cache) |
|
|
|
st.write("## Summary") |
|
|
|
summary = lida.summarize( |
|
selected_dataset, |
|
summary_method=selected_method, |
|
textgen_config=textgen_config) |
|
|
|
if "dataset_description" in summary: |
|
st.write(summary["dataset_description"]) |
|
|
|
if "fields" in summary: |
|
fields = summary["fields"] |
|
nfields = [] |
|
for field in fields: |
|
flatted_fields = {} |
|
flatted_fields["column"] = field["column"] |
|
|
|
for row in field["properties"].keys(): |
|
if row != "samples": |
|
flatted_fields[row] = field["properties"][row] |
|
else: |
|
flatted_fields[row] = str(field["properties"][row]) |
|
|
|
nfields.append(flatted_fields) |
|
nfields_df = pd.DataFrame(nfields) |
|
st.write(nfields_df) |
|
else: |
|
st.write(str(summary)) |
|
|
|
|
|
if summary: |
|
st.sidebar.write("### Goal Selection") |
|
|
|
num_goals = st.sidebar.slider( |
|
"Number of goals to generate", |
|
min_value=1, |
|
max_value=10, |
|
value=4) |
|
own_goal = st.sidebar.checkbox("Add Your Own Goal") |
|
|
|
|
|
goals = lida.goals(summary, n=num_goals, textgen_config=textgen_config) |
|
st.write(f"## Goals ({len(goals)})") |
|
|
|
default_goal = goals[0].question |
|
goal_questions = [goal.question for goal in goals] |
|
|
|
if own_goal: |
|
user_goal = st.sidebar.text_input("Describe Your Goal") |
|
|
|
if user_goal: |
|
|
|
new_goal = Goal(question=user_goal, visualization=user_goal, rationale="") |
|
goals.append(new_goal) |
|
goal_questions.append(new_goal.question) |
|
|
|
selected_goal = st.selectbox('Choose a generated goal', options=goal_questions, index=0) |
|
|
|
|
|
selected_goal_index = goal_questions.index(selected_goal) |
|
st.write(goals[selected_goal_index]) |
|
|
|
selected_goal_object = goals[selected_goal_index] |
|
|
|
|
|
if selected_goal_object: |
|
st.sidebar.write("## Visualization Library") |
|
visualization_libraries = ["seaborn", "matplotlib", "plotly"] |
|
|
|
selected_library = st.sidebar.selectbox( |
|
'Choose a visualization library', |
|
options=visualization_libraries, |
|
index=0 |
|
) |
|
|
|
|
|
st.write("## Visualizations") |
|
|
|
|
|
num_visualizations = st.sidebar.slider( |
|
"Number of visualizations to generate", |
|
min_value=1, |
|
max_value=10, |
|
value=2) |
|
|
|
textgen_config = TextGenerationConfig( |
|
n=num_visualizations, temperature=temperature, |
|
model=selected_model, |
|
use_cache=use_cache) |
|
|
|
|
|
visualizations = lida.visualize( |
|
summary=summary, |
|
goal=selected_goal_object, |
|
textgen_config=textgen_config, |
|
library=selected_library) |
|
|
|
viz_titles = [f'Visualization {i+1}' for i in range(len(visualizations))] |
|
|
|
selected_viz_title = st.selectbox('Choose a visualization', options=viz_titles, index=0) |
|
|
|
selected_viz = visualizations[viz_titles.index(selected_viz_title)] |
|
|
|
if selected_viz.raster: |
|
from PIL import Image |
|
import io |
|
import base64 |
|
|
|
imgdata = base64.b64decode(selected_viz.raster) |
|
img = Image.open(io.BytesIO(imgdata)) |
|
st.image(img, caption=selected_viz_title, use_column_width=True) |
|
|
|
st.write("### Visualization Code") |
|
st.code(selected_viz.code) |
|
|