Spaces:
Running
Running
File size: 13,099 Bytes
2fdb666 46af7ed 2fdb666 dd559e1 2fdb666 46af7ed d2f86ce 46af7ed dd559e1 46af7ed 2fdb666 46af7ed d2f86ce 46af7ed d2f86ce 46af7ed dd559e1 d2f86ce 46af7ed dd559e1 46af7ed 2fdb666 d2f86ce dd559e1 d2f86ce dd559e1 d2f86ce 46af7ed dd559e1 d2f86ce 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed dd559e1 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 dd559e1 46af7ed 3868073 46af7ed 2fdb666 46af7ed 2fdb666 dd559e1 2fdb666 46af7ed d76eab0 46af7ed d76eab0 46af7ed 2fdb666 46af7ed d76eab0 46af7ed dd559e1 46af7ed dd559e1 46af7ed d76eab0 46af7ed dd559e1 2fdb666 46af7ed d76eab0 2fdb666 dd559e1 d76eab0 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed dd559e1 2fdb666 46af7ed 2fdb666 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import numpy as np
import gradio as gr
import spaces
import os
import random
import subprocess
import torch
from PIL import Image
import cv2
from huggingface_hub import login
from diffusers import FluxControlNetPipeline, FluxControlNetModel
from diffusers.models import FluxMultiControlNetModel
import warnings
from typing import Tuple
"""
FLUXβ1 ControlNet demo
----------------------
This script rebuilds the Gradio interface shown in your screenshot with **one** controlβimage upload
slot and integrates the FLUX.1βdevβControlNetβUnionβPro model.
Key points
~~~~~~~~~~
* Single *control image* input (left).
* *Result* and *Preβprocessed Cond* previews sideβbyβside (center & right).
* *Prompt* textbox plus a dedicated **ControlNet** panel for choosing the mode and strength.
* Seed handling with optional randomisation.
* Advanced sliders for *Guidance scale* and *Inference steps*.
* Works on CUDA (bfloat16) or CPU (float32).
* Minimal Canny preview implementation when the *canny* mode is selected (extend as you like for the
other modes).
Before running, set the `HUGGINGFACE_TOKEN` environment variable **or** call
`login("<YOUR_HF_TOKEN>")` explicitly.
"""
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
# --------------------------------------------------
# ModelΒ & pipeline setup
# --------------------------------------------------
HF_TOKEN = os.getenv("HF_TOKEN_NEW")
login(HF_TOKEN)
# If you prefer to hardβcode the token, uncomment:
# login("hf_your_token_here")
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
CONTROLNET_MODEL = "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
controlnet_single = FluxControlNetModel.from_pretrained(
CONTROLNET_MODEL, torch_dtype=dtype
)
controlnet = FluxMultiControlNetModel([controlnet_single])
pipe = FluxControlNetPipeline.from_pretrained(
BASE_MODEL, controlnet=controlnet, torch_dtype=dtype
).to(device)
pipe.set_progress_bar_config(disable=True)
# --------------------------------------------------
# UIΒ β> model value mapping
# --------------------------------------------------
MODE_MAPPING = {
"canny": 0,
"tile": 1,
"depth": 2,
"blur": 3,
"pose": 4,
"gray": 5,
"low quality": 6,
}
MAX_SEED = 100
# -----------------------------------------------------------------------------
# Preview helpers βΒ one small, selfβcontained function per mode
# -----------------------------------------------------------------------------
def _preview_canny(
pil_img: Image.Image, canny_threshold_1: int, canny_threshold_2: int
) -> Image.Image:
"""Fast Cannyβedge preview (already implemented)."""
arr = np.array(pil_img.convert("RGB"))
edges = cv2.Canny(arr, threshold1=canny_threshold_1, threshold2=canny_threshold_2)
edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
return Image.fromarray(edges_rgb)
# βββ tile ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ #
def _preview_tile(pil_img: Image.Image, grid: Tuple[int, int] = (2, 2)) -> Image.Image:
"""Replicates *pil_img* into an *nΓm* tiled grid (default 2Γ2).
This offers a quick visual hint of what a *tiling* control mode will do
(repeatable textures, etc.)."""
cols, rows = grid
img_rgb = pil_img.convert("RGB")
w, h = img_rgb.size
tiled = Image.new("RGB", (w * cols, h * rows))
for c in range(cols):
for r in range(rows):
tiled.paste(img_rgb, (c * w, r * h))
return tiled
# βββ depth βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ #
def _preview_depth(pil_img: Image.Image) -> Image.Image:
"""Very rough *depth* proxy using the Laplacian and a colormap.
βΈ Convert to gray
βΈ Run Laplacian to highlight depthβlike gradients
βΈ Apply a TURBO colormap to mimic depth heatβmap appearance"""
gray = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2GRAY)
lap = cv2.Laplacian(gray, cv2.CV_16S, ksize=3)
depth = cv2.convertScaleAbs(lap)
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_TURBO)
return Image.fromarray(depth_color)
# βββ blur βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ #
def _preview_blur(pil_img: Image.Image, ksize: int = 15) -> Image.Image:
"""Gaussian blur preview.
A single, relatively large kernel is enough for UI illustration."""
if ksize % 2 == 0:
ksize += 1 # kernel must be odd
blurred = cv2.GaussianBlur(np.array(pil_img), (ksize, ksize), sigmaX=0)
return Image.fromarray(blurred)
# βββ pose ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ #
def _preview_pose(pil_img: Image.Image) -> Image.Image:
"""Attempt a lightweight 2βD pose overlay using *mediapipe* if available.
If *mediapipe* is not installed (or CPU inference fails), we gracefully
fallback to an edgeβmap preview so the UI never crashes."""
try:
import mediapipe as mp # type: ignore
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
img_bgr = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
with mp_pose.Pose(static_image_mode=True) as pose_estimator:
results = pose_estimator.process(
img_bgr[..., ::-1]
) # Mediapipe expects RGB
annotated = img_bgr.copy()
if results.pose_landmarks:
mp_drawing.draw_landmarks(
annotated, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
)
annotated_rgb = cv2.cvtColor(annotated, cv2.COLOR_BGR2RGB)
return Image.fromarray(annotated_rgb)
except Exception as exc: # pragma: no cover βΒ any import / runtime error
warnings.warn(
f"Pose preview failed ({exc!s}); falling back to Canny.", RuntimeWarning
)
# Return an edge map as a sensible fallback rather than exploding the UI
return _preview_canny(pil_img, 100, 200)
# βββ gray βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ #
def _preview_gray(pil_img: Image.Image) -> Image.Image:
"""Simple grayscale conversion, but keep a 3βchannel RGB image so the UI
widget pipeline stays consistent."""
gray = cv2.cvtColor(np.array(pil_img.convert("RGB")), cv2.COLOR_RGB2GRAY)
gray_rgb = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
return Image.fromarray(gray_rgb)
# βββ low quality βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ #
def _preview_low_quality(pil_img: Image.Image, factor: int = 8) -> Image.Image:
"""Mimic a lowβquality thumbnail: aggressively downsample then upscale.
The default *factor* (8Γ) is chosen to make artefacts obvious."""
img_rgb = pil_img.convert("RGB")
w, h = img_rgb.size
small = img_rgb.resize((max(1, w // factor), max(1, h // factor)), Image.BILINEAR)
low_q = small.resize(
(w, h), Image.NEAREST
) # upsample w/ Nearest to exaggerate blocks
return low_q
# -----------------------------------------------------------------------------
# Master dispatch
# -----------------------------------------------------------------------------
def _make_preview(
control_image: Image.Image,
mode: str,
canny_threshold_1: int = 100,
canny_threshold_2: int = 200,
) -> Image.Image:
"""Return a *quickβnβdirty* preview image for the requested *mode*.
Parameters
----------
control_image : PIL.Image
The input image selected by the user.
mode : str
One of the keys of :data:`MODE_MAPPING`.
canny_threshold_1 / 2 : int, optional
Only used if *mode* is "canny" (passed straight to OpenCV Canny).
"""
mode = mode.lower()
if mode not in MODE_MAPPING:
warnings.warn(f"Unknown preview mode '{mode}'. Returning untouched image.")
return control_image
if mode == "canny":
return _preview_canny(control_image, canny_threshold_1, canny_threshold_2)
if mode == "tile":
return _preview_tile(control_image)
if mode == "depth":
return _preview_depth(control_image)
if mode == "blur":
return _preview_blur(control_image)
if mode == "pose":
return _preview_pose(control_image)
if mode == "gray":
return _preview_gray(control_image)
if mode == "low quality":
return _preview_low_quality(control_image)
# Fallback βΒ should never happen due to early mode check
return control_image
# --------------------------------------------------
# Inference function
# --------------------------------------------------
@spaces.GPU
def infer(
control_image: Image.Image,
prompt: str,
mode: str,
control_strength: float,
seed: int,
randomize_seed: bool,
guidance_scale: float,
num_inference_steps: int,
canny_threshold_1: int,
canny_threshold_2: int,
):
if control_image is None:
raise gr.Error("Please upload a control image first.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
gen = torch.Generator(device).manual_seed(seed)
w, h = control_image.size
preprocessed = _make_preview(
control_image, mode, canny_threshold_1, canny_threshold_2
)
result = pipe(
prompt=prompt,
control_image=[preprocessed],
control_mode=[MODE_MAPPING[mode]],
width=w,
height=h,
controlnet_conditioning_scale=[control_strength],
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=gen,
).images[0]
return result, seed, preprocessed
# --------------------------------------------------
# GradioΒ UI
# --------------------------------------------------
css = """#wrapper {max-width: 960px; margin: 0 auto;}"""
with gr.Blocks(css=css, elem_id="wrapper") as demo:
gr.Markdown("## FLUX.1βdevβControlNetβUnionβPro by Frank")
gr.Markdown(
"A unified ControlNet for **FLUX.1βdev** from the InstantX team and Shakker Labs. "
+ "Recommended strengths: *cannyΒ 0.76*. Long prompts usually help."
)
# ------------ Image panel row ------------
with gr.Row():
control_image = gr.Image(
label="Upload animage",
type="pil",
height=512 + 256,
)
result_image = gr.Image(label="Result", height=512 + 256)
preview_image = gr.Image(label="Preβprocessed Cond", height=512 + 256)
# ------------ Prompt ------------
prompt_txt = gr.Textbox(label="Prompt", value="White background", lines=1)
# ------------ ControlNet settings ------------
with gr.Row():
with gr.Column():
gr.Markdown("### ControlNet")
mode_radio = gr.Radio(
choices=list(MODE_MAPPING.keys()), value="canny", label="Mode"
)
strength_slider = gr.Slider(
0.0, 1.0, value=0.76, step=0.01, label="control strength"
)
gr.Markdown("### Preprocess")
canny_threshold_1 = gr.Slider(
0, 500, step=1, value=100, label="Canny threshold 1"
)
canny_threshold_2 = gr.Slider(
0, 500, step=1, value=200, label="Canny threshold 2"
)
with gr.Column():
seed_slider = gr.Slider(0, MAX_SEED, step=1, value=42, label="Seed")
randomize_chk = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(
0.0, 10.0, step=0.1, value=3.5, label="Guidance scale"
)
steps_slider = gr.Slider(1, 50, step=1, value=50, label="Inference steps")
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=infer,
inputs=[
control_image,
prompt_txt,
mode_radio,
strength_slider,
seed_slider,
randomize_chk,
guidance_slider,
steps_slider,
canny_threshold_1,
canny_threshold_2,
],
outputs=[result_image, seed_slider, preview_image],
)
if __name__ == "__main__":
demo.launch()
|