"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
import shutil
import pandas as pd # Ny import för pandas
import json # För att parsa metadata-kolumnen
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content[:1000]}\n'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# --- Start ChromaDB Setup ---
# Define the directory for ChromaDB persistence
CHROMA_DB_DIR = "./chroma_db"
CSV_FILE_PATH = "./supabase_docs.csv" # Path to your CSV file
# Build embeddings (this remains the same)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
# Initialize ChromaDB
# If the directory exists and contains data, load the existing vector store.
# Otherwise, create a new one and add documents from the CSV file.
if os.path.exists(CHROMA_DB_DIR) and os.listdir(CHROMA_DB_DIR):
print(f"Loading existing ChromaDB from {CHROMA_DB_DIR}")
vector_store = Chroma(
persist_directory=CHROMA_DB_DIR,
embedding_function=embeddings
)
else:
print(f"Creating new ChromaDB at {CHROMA_DB_DIR} and loading documents from {CSV_FILE_PATH}.")
# Ensure the directory is clean before creating new
if os.path.exists(CHROMA_DB_DIR):
shutil.rmtree(CHROMA_DB_DIR)
os.makedirs(CHROMA_DB_DIR)
# Load data from the CSV file
if not os.path.exists(CSV_FILE_PATH):
raise FileNotFoundError(f"CSV file not found at {CSV_FILE_PATH}. Please ensure it's in the root directory.")
df = pd.read_csv(CSV_FILE_PATH)
documents = []
for index, row in df.iterrows():
content = row["content"]
# Extract the question part from the content
# Assuming the question is everything before "Final answer :"
question_part = content.split("Final answer :")[0].strip()
# Extract the final answer part from the content
final_answer_part = content.split("Final answer :")[-1].strip() if "Final answer :" in content else ""
# Parse the metadata string into a dictionary
# The metadata column might be stored as a string representation of a dictionary
try:
metadata = json.loads(row["metadata"].replace("'", "\"")) # Replace single quotes for valid JSON
except json.JSONDecodeError:
metadata = {} # Fallback if parsing fails
# Add the extracted final answer to the metadata for easy retrieval
metadata["final_answer"] = final_answer_part
# Create a Document object. The page_content should be the question for similarity search.
# The answer will be in metadata.
documents.append(Document(page_content=question_part, metadata=metadata))
if not documents:
print("No documents loaded from CSV. ChromaDB will be empty.")
# Create an empty ChromaDB if no documents are found
vector_store = Chroma(
persist_directory=CHROMA_DB_DIR,
embedding_function=embeddings
)
else:
vector_store = Chroma.from_documents(
documents=documents,
embedding=embeddings,
persist_directory=CHROMA_DB_DIR
)
vector_store.persist() # Save the new vector store to disk
print(f"ChromaDB initialized and persisted with {len(documents)} documents from CSV.")
# Create retriever tool using the Chroma vector store
retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question_Search",
description="A tool to retrieve similar questions from a vector store. The retrieved document's metadata contains the 'final_answer' to the question.",
)
# Add the new retriever tool to your list of tools
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
retriever_tool,
]
# Build graph function
def build_graph(provider: str = "google"):
"""Build the graph"""
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
from langchain_core.messages import AIMessage
def retriever(state: MessagesState):
query = state["messages"][-1].content
# Use the vector_store directly for similarity search to get the full Document object
similar_docs = vector_store.similarity_search(query, k=1)
if similar_docs:
similar_doc = similar_docs[0]
# Prioritize 'final_answer' from metadata, then check page_content
if "final_answer" in similar_doc.metadata and similar_doc.metadata["final_answer"]:
answer = similar_doc.metadata["final_answer"]
elif "Final answer :" in similar_doc.page_content:
answer = similar_doc.page_content.split("Final answer :")[-1].strip()
else:
answer = similar_doc.page_content.strip() # Fallback to page_content if no explicit answer
# The system prompt expects "FINAL ANSWER: [ANSWER]".
# We should return the extracted answer directly, as the prompt handles the formatting.
return {"messages": [AIMessage(content=answer)]}
else:
return {"messages": [AIMessage(content="No similar questions found in the knowledge base.")]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.set_entry_point("retriever")
builder.set_finish_point("retriever")
return builder.compile()