Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from PIL import Image | |
| import torch | |
| import numpy as np | |
| from rembg import remove | |
| from transformers import CLIPProcessor, CLIPModel | |
| # Lade das Modell und den Prozessor | |
| model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip") | |
| processor = CLIPProcessor.from_pretrained("patrickjohncyh/fashion-clip") | |
| # Prompts für jede Merkmalsgruppe | |
| category_prompts = ["a t-shirt", "a long-sleeved shirt", "a hoodie", "a sweatshirt", "a pullover", "a tank top"] | |
| color_prompts = ["a red garment", "a blue garment", "a black garment", "a white garment", "a green garment", "a yellow garment", "a gray garment", "a brown garment", "a pink garment", "a purple garment"] | |
| pattern_prompts = ["a plain shirt", "a striped shirt", "a floral shirt", "a checked shirt", "a dotted shirt", "an abstract patterned shirt"] | |
| fit_prompts = ["a slim fit shirt", "an oversized top", "a regular fit shirt", "a cropped shirt", "a shirt with a crew neck", "a shirt with a v-neck", "a shirt with a round neckline"] | |
| # Hilfsfunktion: finde das passendste Prompt für eine Gruppe | |
| def predict_best_prompt(image, prompts): | |
| inputs = processor(text=prompts, images=[image], return_tensors="pt", padding=True) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits_per_image = outputs.logits_per_image | |
| probs = logits_per_image.softmax(dim=1).squeeze().tolist() | |
| best_idx = torch.tensor(probs).argmax().item() | |
| return prompts[best_idx], probs[best_idx] | |
| # Hauptfunktion für die App | |
| def analyze_image(image): | |
| if image is None: | |
| return None, "⚠️ Please upload or take a picture first." | |
| # Hintergrund einmal entfernen! | |
| image_np = np.array(image) | |
| image_no_bg_np = remove(image_np) | |
| segmented_image = Image.fromarray(image_no_bg_np) | |
| # Vorhersage mit CLIP auf dem segmentierten Bild | |
| results = {} | |
| results["Category"], cat_score = predict_best_prompt(segmented_image, category_prompts) | |
| results["Color"], color_score = predict_best_prompt(segmented_image, color_prompts) | |
| results["Pattern"], pattern_score = predict_best_prompt(segmented_image, pattern_prompts) | |
| results["Fit"], fit_score = predict_best_prompt(segmented_image, fit_prompts) | |
| text_result = ( | |
| f"Category: {results['Category']} ({cat_score:.2f})\n" | |
| f"Color: {results['Color']} ({color_score:.2f})\n" | |
| f"Pattern: {results['Pattern']} ({pattern_score:.2f})\n" | |
| f"Fit: {results['Fit']} ({fit_score:.2f})" | |
| ) | |
| return segmented_image, text_result | |
| # Gradio UI erstellen | |
| iface = gr.Interface( | |
| fn=analyze_image, | |
| inputs=gr.Image(type="pil", label="Upload or take a picture", sources=["upload", "webcam"]), | |
| outputs=[gr.Image(label="Segmentiertes Bild"), gr.Textbox(label="Vorhersage")], | |
| title="Fashion Attribute Predictor (Prototype 2 + Segmentation)", | |
| description="Das Modell entfernt zuerst den Hintergrund (Segmentierung) und erkennt dann Attribute mit FashionCLIP." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |