_base_ = [ '../kfashion_r50_separated_query_base.py' ] num_stages = 3 num_proposals = 100 conv_kernel_size = 1 model = dict( backbone=dict( norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, ), rpn_head=dict(num_classes=46, ), roi_head=dict( mask_head=[ dict( type='KernelUpdateHead', spatial_fusion=False, use_mlvl_feat=True, attr_query=True, num_classes=46, num_ffn_fcs=2, num_heads=8, num_cls_fcs=1, num_mask_fcs=1, feedforward_channels=2048, in_channels=256, out_channels=256, dropout=0.0, mask_thr=0.5, conv_kernel_size=conv_kernel_size, mask_upsample_stride=2, ffn_act_cfg=dict(type='ReLU', inplace=True), with_ffn=True, feat_transform_cfg=dict(conv_cfg=dict(type='Conv2d'), act_cfg=None), kernel_updator_cfg=dict( type='KernelUpdator', in_channels=256, feat_channels=256, out_channels=256, input_feat_shape=3, act_cfg=dict(type='ReLU', inplace=True), norm_cfg=dict(type='LN')), loss_mask=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_dice=dict( type='DiceLoss', loss_weight=4.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=2.0)) for _ in range(num_stages) ]), ) data = dict( train=dict( times=3, ), )