import pandas as pd import fitz # PyMuPDF for PDF extraction import spacy from langchain.vectorstores import FAISS import torch from transformers import AutoTokenizer, AutoModel import gradio as gr # Load and preprocess PDF text def extract_text_from_pdf(pdf_path): text = "" with fitz.open(pdf_path) as pdf_document: for page_num in range(len(pdf_document)): page = pdf_document.load_page(page_num) text += page.get_text() return text # Extract text from the PDF pdf_text = extract_text_from_pdf('Getting_Started_with_Ubuntu_16.04.pdf') # Replace with your PDF path # Convert the text to a DataFrame df = pd.DataFrame({'text': [pdf_text]}) # Define your custom embedding model class CustomEmbeddingModel: def __init__(self, model_name): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModel.from_pretrained(model_name) def embed_text(self, text): inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) with torch.no_grad(): embeddings = self.model(**inputs).last_hidden_state.mean(dim=1) return embeddings[0].numpy() embedding_model = CustomEmbeddingModel('distilbert-base-uncased') # Replace with your model name # Load Spacy model for preprocessing nlp = spacy.load("en_core_web_sm") def preprocess_text(text): doc = nlp(text) tokens = [token.lemma_.lower() for token in doc if token.text.lower() not in stopwords.words('english') and token.is_alpha] return ' '.join(tokens) # Apply preprocessing and embedding df['text'] = df['text'].apply(preprocess_text) df['text_embeddings'] = df['text'].apply(lambda x: embedding_model.embed_text(x)) # Create FAISS vector store documents = df['text'].tolist() embeddings = df['text_embeddings'].tolist() vector_store = FAISS.from_documents(documents, embeddings) # Function to generate a response def generate_response(query): preprocessed_query = preprocess_text(query) query_embedding = embedding_model.embed_text(preprocessed_query) # Find the closest document in the vector store distances, indices = vector_store.search(query_embedding, k=1) # k=1 for the closest document if indices: response = documents[indices[0]] else: response = "No relevant information found." return response # Gradio interface iface = gr.Interface( fn=generate_response, inputs=gr.Textbox(label="Enter your query", placeholder="Ask about Ubuntu..."), outputs=gr.Textbox(label="Response"), title="Ubuntu Manual Chatbot", description="Ask questions about the Ubuntu manual." ) if __name__ == "__main__": iface.launch()