File size: 7,458 Bytes
c857e53 1fe1db5 c857e53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import glob
import gradio as gr
import gspread
import numpy as np
import pandas as pd
import tqdm
from google.cloud import documentai_v1 as documentai
from google.oauth2 import service_account
credentials = None
def process_document_form_parser(credentials_file, images_folder):
"""Processes a document using the Form Parser."""
global credentials
credentials = service_account.Credentials.from_service_account_file(
credentials_file,
scopes=[
"https://www.googleapis.com/auth/cloud-platform",
"https://www.googleapis.com/auth/spreadsheets",
"https://www.googleapis.com/auth/drive",
],
)
project_id = "cru-ocr"
location = "us"
processor_id = "26630ebbc76345a1"
image_paths = glob.glob(f"{images_folder}/*.pdf")[:3]
all_fields = {
"Name": np.empty(len(image_paths), dtype=object),
"Phone": np.empty(len(image_paths), dtype=object),
"Email": np.empty(len(image_paths), dtype=object),
"Cadet": np.empty(len(image_paths), dtype=object),
"Greek or Going Greek": np.empty(len(image_paths), dtype=object),
"Transfer Student": np.empty(len(image_paths), dtype=object),
"Military Veteran": np.empty(len(image_paths), dtype=object),
"International Student": np.empty(len(image_paths), dtype=object),
"Res Hall": np.empty(len(image_paths), dtype=object),
"Room #": np.empty(len(image_paths), dtype=object),
"Off Campus": np.empty(len(image_paths), dtype=object),
"Fr": np.empty(len(image_paths), dtype=object),
"So": np.empty(len(image_paths), dtype=object),
"Jr": np.empty(len(image_paths), dtype=object),
"Sr": np.empty(len(image_paths), dtype=object),
"Grad Student": np.empty(len(image_paths), dtype=object),
"Male": np.empty(len(image_paths), dtype=object),
"Female": np.empty(len(image_paths), dtype=object),
"Non Binary": np.empty(len(image_paths), dtype=object),
}
client = documentai.DocumentProcessorServiceClient(credentials=credentials)
name = client.processor_path(project_id, location, processor_id)
for file_idx, file_path in enumerate(tqdm.tqdm(image_paths)):
with open(file_path, "rb") as image_file:
image_content = image_file.read()
raw_document = documentai.RawDocument(
content=image_content, mime_type="application/pdf"
)
request = documentai.ProcessRequest(name=name, raw_document=raw_document)
result = client.process_document(request=request)
document = result.document
for page in document.pages:
for form_field in page.form_fields:
field_name = (
form_field.field_name.text_anchor.content
if form_field.field_name
else "Unnamed Field"
)
field_value = (
form_field.field_value.text_anchor.content
if form_field.field_value
else "No Value"
)
field_name = field_name.strip().replace(":", "")
field_value = field_value.strip().replace(":", "")
if field_name == "Name" and "\n" in field_value:
field_value = " ".join(field_value.split("\n")[1:])
# Check if the field is a checkbox and set its value accordingly
if field_name in all_fields.keys():
if field_name == "Email":
# Replace "ut.edu" with "vt.edu" in email addresses
field_value = field_value.replace("ut.edu", "vt.edu")
# Make email addresses lowercase
field_value = field_value.lower()
# Remove spaces from email addresses
field_value = field_value.replace(" ", "")
if field_name == "Phone":
# Remove non-numeric characters from phone numbers
field_value = "".join(filter(str.isdigit, field_value))
# Parse checkboxes
if field_value == "β":
field_value = "Yes"
# elif field_value == "β":
# field_value = ""
all_fields[field_name][file_idx] = field_value
else:
print(
f"Unused field name: {field_name}, field value: {field_value}"
)
df = pd.DataFrame(all_fields, columns=all_fields.keys())
df["Year"] = df.apply(condense_year, axis=1)
df = df.drop(columns=["Fr", "So", "Jr", "Sr", "Grad Student"])
df = df.replace({"β": "", None: ""})
return df
def condense_year(row):
"""
Handles logic to condense year values in the DataFrame row.
"""
years = ["Fr", "So", "Jr", "Sr", "Grad Student"]
year_vals = [row[year] for year in years]
# Box was checked
if "Yes" in year_vals:
return years[year_vals.index("Yes")]
# Four boxes were unchecked (meaning one box was likely checked and not recognized)
elif year_vals.count("β") == 4:
for val in year_vals:
if not val or "β" not in val:
return years[year_vals.index(val)]
return ""
def upload_to_google_sheets(df):
"""Uploads the edited DataFrame to a Google Sheet."""
global credentials
spreadsheet_name = "Cru Connect Cards"
worksheet_name = "Sheet1"
# Authenticate with Google Sheets
gc = gspread.authorize(credentials)
# Open the Google Sheet
try:
spreadsheet = gc.open(spreadsheet_name)
except gspread.SpreadsheetNotFound:
spreadsheet = gc.create(spreadsheet_name)
# Select the worksheet
try:
worksheet = spreadsheet.worksheet(worksheet_name)
except gspread.WorksheetNotFound:
worksheet = spreadsheet.add_worksheet(
title=worksheet_name, rows="100", cols="20"
)
# Clear the worksheet before uploading new data
worksheet.clear()
# Upload the DataFrame to the worksheet
worksheet.update([df.columns.values.tolist()] + df.values.tolist())
return f"Data uploaded successfully to {spreadsheet_name} - {worksheet_name}."
# Gradio Interface
def gradio_interface(credentials_file, images_folder):
return process_document_form_parser(credentials_file.name, images_folder)
def upload_handler(df_data):
df = pd.DataFrame(df_data)
result = upload_to_google_sheets(df)
return result
with gr.Blocks() as iface:
gr.Markdown("# Document Processing and Upload to Google Sheets")
credentials_file = gr.File(
label="Credentials File"#, value="cru-ocr-ee936d111292.json"
)
images_folder_path = gr.Textbox(label="Path to Images Folder", value="images_v2")
process_button = gr.Button("Process Documents")
output_dataframe = gr.Dataframe(label="Output", interactive=True)
upload_button = gr.Button("Upload to Google Sheets")
upload_status = gr.Textbox(label="Upload Status")
process_button.click(
fn=gradio_interface,
inputs=[credentials_file, images_folder_path],
outputs=[output_dataframe],
)
upload_button.click(
fn=upload_handler, inputs=[output_dataframe], outputs=[upload_status]
)
iface.launch()
|