Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 16,936 Bytes
4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 71b44cf 4e80e30 a6cd4bf 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 897040e a6cd4bf 75ba88e a6cd4bf 4634e4d d4e1606 a6cd4bf d4e1606 4634e4d a6cd4bf d4e1606 a6cd4bf d4e1606 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 897040e 75ba88e 897040e 75ba88e 897040e 75ba88e 897040e 75ba88e 897040e 4e80e30 4634e4d 4e80e30 75ba88e 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 4634e4d 4e80e30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import gspread
import pandas as pd
from google.oauth2 import service_account
# CREDENTIALS_INFO = {
# "type": "service_account",
# "project_id": "cru-ocr",
# "private_key_id": "ee936d111292eb13521edf3d201eb85ca4391824",
# "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQCxFAxXwyy+VS3M\nVKu42MYGlpTc68vuA5ZxR4ZL3ukXrOtBKTCw6XwXx87dPvczAkxAcxgmUMCOPFJN\nRnt2bpOqGmOxgjIZ245LZXULgjMddLGiPR7mD4mejX/4zHfXZZpnmQrl6Ix4Y2/S\nhD2UbG+bub1qUPbYbycGnVf537tiZlP7OTNRo3S5Xsvacx8Tj8OUiGZhtkbnqqYy\nF9dgheJp0nPICZbTnDswCeSGQKVH65eVakwxAg3Aeeugqhjmoh+ornZwwSFd2UfV\nlo5UuBrxccKmM71p1a2eCudL5wqnwXkCfmoQrylyT5bNRANcEhYGjk6jJFaaKnkQ\nnjIFC2sHAgMBAAECggEANcsWWM7k18k+iXUrWZMYzUWPYXGMWPjkCfOle4TzIIsa\nSIg/z26OkRbU4+dN50QKcAXGz1T2uf7fLbR8qyS6XRF5OaKIn8xP9N2UafOanZcm\no1eX/GG5992ag7VxrpCiEFiws9kqWyQyAyzDHES4vwD05shDxMo3e83uvOzXmvNj\ngiTsdgVYQMzQt5RtsrH+bxKZ5DV7cyDzr2cINjUHziOvdwKEB7konw+rLNPTOlhK\ntK5dG9zN5E8CPnKraYC2tZB5NmJqFUDrq9P1YHWT6EdNsaHLlHHTG/pNrjklfZnl\nZJbwM23Y+3XAdlfKsXSPpskg+DPfxXL7cQTZVDsH+QKBgQDgmttFrHslaHl9pMUt\ny0DNRFHCkm3v5/bJ6lIC7F2MOtw2b48hpzjnvMsJbH6xxUWkQW4FYBpnzqa0YBXk\nwnH/eY+zq4FKQoMDhR75oPNBU6n5BPmTaB5wGjjI4MypjoC79iKaCZ6V6Px4+9ib\nOpoXUOty9LYTNTBB0Qube8BCjQKBgQDJ1IZswI+6LmHy/8zqQpciosBx6ITehQb6\n8X7u3K5mNz/SMxlS9C5YMTAKMefop9QPecaVC1XFiVnZou9LjfKVCeEr4/+1eSPF\nwFP5GJfT5WmWKHQtz0rZTFtSz1zwSAbz0buCIERNAOmF/xb26I3AC6mSy4tcxeHc\n+0pLBGwI4wKBgErWrotnrlzHk/uuhFj+6ae7xPZtLh6LDys2XX9F3OHV1vx4bZvM\nCWUF/i00rn5zegICHzPBUusV62wcvA7OT4fNrHk0g08IHHl2yNxqqcMxqmgkJTjd\nr46w3gzpAqjYp8J5gAwNen7+8+koGYOXojJ0rw9NxMFfrqWvjwuOz4AdAoGAe4PX\nXDif/NWj1d1b30UvTuABG/SrU65fbjVac/2TsTRAl3f0GIMc1ZYMi0CtZwFGUs44\njD/qlsAOv5TqEvfkq/bm2UBn3fwruzqPaVL2n5O3AVDygJJqgP8sqEoE23uI3a/N\nq73pbqKPRxSsTiBVl2DLvu1X9UeYiO80MSKcpvcCgYB295NMYiFwLtvaVk7kFhY3\nGuNTyuDD/sgMCsABDlJlG3KF2l4BWBO1BG1qHyRtmMrFjGHIV8BKDjjJLsT13REb\nVwFr+V0Jo+9f1yyjfpakrGTBO6eQJZhrJcGIkEVS3BVIC4pP0Hxt8UKlo/XtZbPN\n8n4ZEXdlalE56RzEsbuXHA==\n-----END PRIVATE KEY-----\n",
# "client_email": "cru-ocr-service-account@cru-ocr.iam.gserviceaccount.com",
# "client_id": "108232587703192834621",
# "auth_uri": "https://accounts.google.com/o/oauth2/auth",
# "token_uri": "https://oauth2.googleapis.com/token",
# "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
# "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/cru-ocr-service-account%40cru-ocr.iam.gserviceaccount.com",
# "universe_domain": "googleapis.com",
# }
CREDENTIALS_INFO = {
"type": "service_account",
"project_id": "connect-card-scanner",
"private_key_id": "54224814c69a155d8bd34128e83e373e0f1caa6f",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDNCRYK1FfJAVaK\nMxznDAr+SFZfqfD6m3MiAfKHJk83cY9JerNOOhc2TwaP8FhZdRs/+2k0FE84Rms2\nUoa6XMSC7JhlobaRFVjtVxljim+ake19i6iGk1kI6/BUYwwfrd1Emw1Dy1eP0rC0\nRoX8gfurF8HR4k4SuFnsSB62f7ttOiP6e0PFxDJxuRG68ua6gRRjWRZf49KEMz5T\nVnWRNzwnUAfd7XuK1MdXnKWG4KWUtLbYa5bv5n47mV3JLc8nwbDZ0redZNeSYf5L\nj0CD/swoNBm8YLzhPoNGPt/2c77Y9Gj5d9Fo3Pg5VuMQXgzpsyCnFPv/sEJi/JXZ\nHkH9JXnzAgMBAAECggEAYcH2R32MyWKg702Fd0fPqgO1YvE021foogtJplSGqomz\nZrZg7WhXDubI2zId/bEPKAdn1pPkXZF9pq3cXNjEPSQvWS2sTSpfdvHzQfmMUqdH\nE3fWBywT5GQR9zouWqBcAkznGy7FdeZfp+SEF6ul4aJ3H+oFjXlmLnkIY70tENsw\nOBs6Q+ffipJXhv5AQ0fGJWLaJ9cywRgyXODfX3mg38M2M53wx25CyN9kSN1ua1W3\nKhziHPCw2zqtRyTUWiA1vPYpN9mCQgz5TLXIRv+6nuwowlIVI/zvpUt9pWZtec2x\n4LYp63XIlYvl37qckh/yuj8DTkRem+ks3eApEVas2QKBgQDm6RZ5bxpr0qT8GdvY\nm8WvwQwHnnwco+WfJEsjlKkDg3Nw6y1aDtS7+DmMwSI5U2Md2tX4y+zqBYHOdVNf\nVjvSEokQKTd3qEeTiJTDGZ49OsaPhnaouqYPyFk1p/loAh0+31rMlAE6Kxi3USwK\n2EpNi0gMApLnAMsoqgD7o/lubQKBgQDjUEUKUJ2jgOOVFwK6DKy/xOx6BJl12vhY\n+JGGNFtKwmMl9GmYaGcXbmlF2NfzAxO4uxdl11U/7LBAvFGQZLGMDfOJy7xcy+95\nzEjpTuHTxB8lTed2ILIyJOwfJRAQO11VB2R6uHbwIJMJWTDwyIv5EG5a+/ZPqErV\nixg0NJXN3wKBgGG874JfALP66VK8L040QSzvbYQcFTSaOyttVVCuMAwIq+hz4zJn\nbKxTmSh252GUZjPQ2RkCWDmGMzeMecm02oVEyzdH+u5vEDzmZvFd+pi4NCu0Iq2w\ns3Giv//yJaNcobxnFivZydsxOrj9ZsMAYhMIjWpn/H5C27tOmjPpaD7RAoGARrjk\nog7u3L3vEKW2HXhwDsIP6O6haD+WYOgFLsH/XUUZX+epKtfgqzOY4ThUB7F/Y0wi\nPXc/eMIFHD77CXeqna6BhO+0TRLOERDz5lK6hA5SumKAjwohJuTB6fa4BrTRlvDT\n3DKkHpWj6ZasWV2r3vOzwe7+dU4g6kt6XlO1//UCgYEAgcp1IdttP9Yj/P+ZQ3Ld\nd2Ujwu9EVtc0bVOtfpLXWi27Zva2+M5oUof1vLpHhSbnCnmz2E4D4JzxHRsMxsZG\n/LIaLjAGMpPYxgK5CSo5FU5KC9ZL3nNjE/2JXq/Cx9Ua7q0S3vvJ8HUxncrFaA/d\nfOeHHOIZTbRFwo0zCggO16g=\n-----END PRIVATE KEY-----\n",
"client_email": "connect-card-scanner@connect-card-scanner.iam.gserviceaccount.com",
"client_id": "114871390457241513072",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/connect-card-scanner%40connect-card-scanner.iam.gserviceaccount.com",
"universe_domain": "googleapis.com",
}
CREDENTIALS = service_account.Credentials.from_service_account_info(
CREDENTIALS_INFO,
scopes=[
"https://www.googleapis.com/auth/cloud-platform",
"https://www.googleapis.com/auth/spreadsheets",
"https://www.googleapis.com/auth/drive",
],
)
PROJECT_ID = "connect-card-scanner"
LOCATION = "us"
PROCESSOR_ID = "30861bab1d979b83"
# 1kzkUCcgvuS5AQ04fnivru93-G1RZIZnjxwLrRZUMccM
ALL_FIELDS_COMBINED = [
"Name",
"Phone",
"Email",
"Cadet",
"Greek or Going Greek",
"Transfer Student",
"Military Veteran",
"International Student",
"Res Hall",
"Room #",
"Off Campus",
"Fr",
"So",
"Jr",
"Sr",
"Grad Student",
"Male",
"Female",
"Non Binary",
"Spiritual Survey Yes",
"Spiritual Survey No",
"Spiritual Survey Maybe",
"Social Event Yes",
"Social Event No",
"Social Event Maybe",
"Small Group Yes",
"Small Group No",
"Small Group Maybe",
]
SHEET_COLUMNS = [
"Timestamp",
"Name",
"Gender",
"Year",
"Phone Number",
"Email",
"Do any of these describe you?",
"Do you live...", # Off campus / On campus
"Which Res Hall are you in?",
"What is your room number?",
"Giving your opinion in a campus wide spiritual survey",
"Social Events with Cru",
"A small group Bible Study",
"Getting our Cru weekly email", # if three 'yeses', then add this
]
def convert_df_to_cleaned_format(df):
"""Convert dataframe to cleaned format"""
# df = pd.DataFrame([list(dict_values)], columns=ALL_FIELDS_COMBINED)
# Year processing
year_map = {
"Fr": "Freshman",
"So": "Sophomore",
"Jr": "Junior",
"Sr": "Senior",
"Grad Student": "Graduate Student",
}
df["Year"] = df.apply(
lambda row: next(
(
year
for year in [
"Fr",
"So",
"Jr",
"Sr",
"Grad Student",
]
if row[year]
),
"",
),
axis=1,
)
df["Year"] = df["Year"].map(year_map)
df.drop(
columns=["Fr", "So", "Jr", "Sr", "Grad Student"],
inplace=True,
)
# Add timestamp
df["Timestamp"] = pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S")
# Combine Male and Female into Gender
df["Gender"] = df.apply(
lambda row: next(
(gender for gender in ["Male", "Female", "Non Binary"] if row[gender]), ""
),
axis=1,
)
df.drop(columns=["Male", "Female", "Non Binary"], inplace=True)
# Combine Small Group Yes, No, Maybe into one column
df["A small group Bible Study"] = df.apply(
lambda row: "Yes"
if row["Small Group Yes"]
else (
"No"
if row["Small Group No"]
else ("Maybe" if row["Small Group Maybe"] else "")
),
axis=1,
)
df.drop(
columns=["Small Group Yes", "Small Group No", "Small Group Maybe"], inplace=True
)
# Combine Social Event Yes, No, Maybe into one column
df["Social Events with Cru"] = df.apply(
lambda row: "Yes"
if row["Social Event Yes"]
else (
"No"
if row["Social Event No"]
else ("Maybe" if row["Social Event Maybe"] else "")
),
axis=1,
)
df.drop(
columns=["Social Event Yes", "Social Event No", "Social Event Maybe"],
inplace=True,
)
# Combine Spiritual Survey Yes, No, Maybe into one column
df["Giving your opinion in a campus wide spiritual survey"] = df.apply(
lambda row: "Yes"
if row["Spiritual Survey Yes"]
else (
"No"
if row["Spiritual Survey No"]
else ("Maybe" if row["Spiritual Survey Maybe"] else "")
),
axis=1,
)
df.drop(
columns=[
"Spiritual Survey Yes",
"Spiritual Survey No",
"Spiritual Survey Maybe",
],
inplace=True,
)
df["Do any of these describe you?"] = df.apply(
lambda row: ", ".join(
[
field
for field in [
"Cadet",
"Greek or Going Greek",
"Transfer Student",
"Military Veteran",
"International Student",
]
if row[field]
]
),
axis=1,
)
df.drop(
columns=[
"Cadet",
"Greek or Going Greek",
"Transfer Student",
"Military Veteran",
"International Student",
],
inplace=True,
)
# Res Hall processing
res_hall_map = {
"cochrange": "Cochrane",
"cid": "Creativity & Innovation District",
"creativity and innovation district": "Creativity & Innovation District",
"creativity & innovation district": "Creativity & Innovation District",
"east aj": "EAJ",
"eaj": "EAJ",
"east campbell": "East Campbell",
"east egg": "East Eggleston",
"east eggleston": "East Eggleston",
"donaldson brown": "GLC",
"graduate life center": "GLC",
"graduate life center at donaldson brown": "GLC",
"glc": "GLC",
"harper": "Harper",
"hoge": "Hoge",
"hillcrest": "Hillcrest",
"johnson": "Johnson",
"johnson hall": "Johnson",
"main campbell": "Main Campbell",
"main egg": "Main Eggleston",
"main eggleston": "Main Eggleston",
"miles": "Miles",
"new hall": "New Hall West",
"new hall west": "New Hall West",
"nhw": "New Hall West",
"new res": "New Res East",
"new res east": "New Res East",
"nre": "New Res East",
"shag": "OShag",
"oshag": "OShag",
"oshaughnessy": "OShag",
"payne": "Payne",
"pearson - east": "Pearson - East",
"pearson-east": "Pearson - East",
"pe": "Pearson - East",
"ep": "Pearson - East",
"phe": "Pearson - East",
"pearson - west": "Pearson - West",
"pearson-west": "Pearson - West",
"pw": "Pearson - West",
"wp": "Pearson - West",
"phw": "Pearson - West",
"py": "PY",
"p-y": "PY",
"peddrew-yates": "PY",
"peddrew yates": "PY",
"p.y.": "PY",
"slusher tower": "Slusher Tower",
"slusher": "Slusher Tower",
"slusher wing": "Slusher Wing",
"upper quad north": "Upper Quad North",
"uqhn": "Upper Quad North",
"uqn": "Upper Quad North",
"vawter": "Vawter",
"west aj": "WAJ",
"waj": "WAJ",
"west egg": "West Eggleston",
"west eggleston": "West Eggleston",
"whitehurst": "Whitehurst",
}
df["Which Res Hall are you in?"] = (
df["Res Hall"]
.str.lower()
.str.strip()
.str.replace("'", "")
.replace(".", "")
.replace("\n", " ")
.map(res_hall_map)
.fillna(df["Res Hall"])
)
df.drop(columns=["Res Hall"], inplace=True)
df["Getting our Cru weekly email"] = df.apply(
lambda row: "Yes"
if all(
row[field] == "Yes"
for field in [
"A small group Bible Study",
"Social Events with Cru",
"Giving your opinion in a campus wide spiritual survey",
]
)
else "No",
axis=1,
)
df["Phone Number"] = df["Phone"][:10] # keep only first 10 digits
df.drop(columns=["Phone"], inplace=True)
df["Do you live..."] = df.apply(
lambda row: "On Campus" if not row["Off Campus"] else "Off Campus", axis=1
)
df.drop(columns=["Off Campus"], inplace=True)
df["What is your room number?"] = df["Room #"]
df.drop(columns=["Room #"], inplace=True)
df = df.replace({"☐": "", None: ""})
# reorder columns to match SHEET_COLUMNS
df = df[SHEET_COLUMNS]
return df
def upload_to_google_sheets(df):
"""Uploads the edited DataFrame to a Google Sheet by appending to existing data."""
df = convert_df_to_cleaned_format(df)
spreadsheet_name = "AI Scanning Hold"
worksheet_name = "2025-2026"
# Authenticate with Google Sheets
gc = gspread.authorize(CREDENTIALS)
# Open the Google Sheet
try:
spreadsheet = gc.open(spreadsheet_name)
except gspread.SpreadsheetNotFound:
spreadsheet = gc.create(spreadsheet_name)
# Select the worksheet
try:
worksheet = spreadsheet.worksheet(worksheet_name)
except gspread.WorksheetNotFound:
worksheet = spreadsheet.add_worksheet(
title=worksheet_name, rows="100", cols="20"
)
# Check if the worksheet is empty or has headers
existing_data = worksheet.get_all_values()
df_headers = df.columns.values.tolist()
if not existing_data:
# If worksheet is empty, add headers first, then all data rows
all_data = [df_headers] + df.values.tolist()
worksheet.update(all_data)
return f"Data uploaded successfully to {spreadsheet_name} - {worksheet_name} (new sheet with headers). Added {len(df)} rows."
else:
# Check if headers exist and match
existing_headers = existing_data[0]
if existing_headers == df_headers:
# Headers match exactly, append all data rows
for _, row in df.iterrows():
worksheet.append_row(row.tolist())
return f"Data appended successfully to {spreadsheet_name} - {worksheet_name}. Added {len(df)} rows."
elif len(existing_headers) == len(df_headers) and all(
h.strip() for h in existing_headers
):
# Sheet has headers but they don't match exactly
# Create a mapping to ensure data goes to correct columns
header_mapping = {}
# Try to map columns by matching header names (case-insensitive, strip whitespace)
for i, df_header in enumerate(df_headers):
for j, existing_header in enumerate(existing_headers):
if df_header.strip().lower() == existing_header.strip().lower():
header_mapping[i] = j
break
if len(header_mapping) == len(df_headers):
# All columns can be mapped
for _, row in df.iterrows():
# Reorder the row data to match existing column order
reordered_row = [""] * len(existing_headers)
for df_col_idx, existing_col_idx in header_mapping.items():
reordered_row[existing_col_idx] = row.iloc[df_col_idx]
worksheet.append_row(reordered_row)
return f"Data appended successfully to {spreadsheet_name} - {worksheet_name}. Added {len(df)} rows (columns reordered to match existing headers)."
else:
# Cannot map all columns - add headers and data anyway but with warning
# First add the new headers as a comment row or handle differently
for _, row in df.iterrows():
worksheet.append_row(row.tolist())
return f"Data appended to {spreadsheet_name} - {worksheet_name}. Added {len(df)} rows (WARNING: Column headers don't match existing headers)."
else:
# Sheet appears to be empty (no real headers) or has different number of columns
# Treat as empty and add headers
worksheet.clear()
all_data = [df_headers] + df.values.tolist()
worksheet.update(all_data)
return f"Data uploaded successfully to {spreadsheet_name} - {worksheet_name} (replaced existing data with headers). Added {len(df)} rows."
|