File size: 16,936 Bytes
4e80e30
4634e4d
4e80e30
 
4634e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
4e80e30
 
4634e4d
 
 
 
 
4e80e30
 
 
4634e4d
4e80e30
 
 
 
 
 
 
 
 
 
 
 
4634e4d
4e80e30
4634e4d
 
 
4e80e30
71b44cf
4e80e30
 
 
 
 
 
 
 
 
 
 
a6cd4bf
 
 
 
4e80e30
 
 
 
 
 
 
 
 
 
 
 
4634e4d
4e80e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4634e4d
4e80e30
 
4634e4d
4e80e30
 
 
 
897040e
a6cd4bf
 
 
 
 
75ba88e
a6cd4bf
4634e4d
 
d4e1606
 
 
a6cd4bf
 
 
 
d4e1606
 
 
 
 
4634e4d
 
 
a6cd4bf
d4e1606
a6cd4bf
d4e1606
 
4e80e30
 
 
 
 
4634e4d
 
 
 
 
 
 
4e80e30
 
4634e4d
 
 
 
 
 
 
 
 
 
 
 
 
4e80e30
 
4634e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
4e80e30
 
4634e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e80e30
897040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ba88e
897040e
 
 
 
 
 
 
 
 
 
75ba88e
897040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ba88e
 
897040e
 
 
 
 
 
 
 
 
 
75ba88e
897040e
 
 
4e80e30
 
4634e4d
 
 
 
 
 
 
 
 
 
 
 
 
4e80e30
75ba88e
4634e4d
4e80e30
4634e4d
 
 
 
4e80e30
4634e4d
 
4e80e30
 
 
 
 
 
 
 
4634e4d
4e80e30
 
 
 
 
4634e4d
 
4e80e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4634e4d
 
 
4e80e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4634e4d
4e80e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import gspread
import pandas as pd
from google.oauth2 import service_account

# CREDENTIALS_INFO = {
#     "type": "service_account",
#     "project_id": "cru-ocr",
#     "private_key_id": "ee936d111292eb13521edf3d201eb85ca4391824",
#     "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQCxFAxXwyy+VS3M\nVKu42MYGlpTc68vuA5ZxR4ZL3ukXrOtBKTCw6XwXx87dPvczAkxAcxgmUMCOPFJN\nRnt2bpOqGmOxgjIZ245LZXULgjMddLGiPR7mD4mejX/4zHfXZZpnmQrl6Ix4Y2/S\nhD2UbG+bub1qUPbYbycGnVf537tiZlP7OTNRo3S5Xsvacx8Tj8OUiGZhtkbnqqYy\nF9dgheJp0nPICZbTnDswCeSGQKVH65eVakwxAg3Aeeugqhjmoh+ornZwwSFd2UfV\nlo5UuBrxccKmM71p1a2eCudL5wqnwXkCfmoQrylyT5bNRANcEhYGjk6jJFaaKnkQ\nnjIFC2sHAgMBAAECggEANcsWWM7k18k+iXUrWZMYzUWPYXGMWPjkCfOle4TzIIsa\nSIg/z26OkRbU4+dN50QKcAXGz1T2uf7fLbR8qyS6XRF5OaKIn8xP9N2UafOanZcm\no1eX/GG5992ag7VxrpCiEFiws9kqWyQyAyzDHES4vwD05shDxMo3e83uvOzXmvNj\ngiTsdgVYQMzQt5RtsrH+bxKZ5DV7cyDzr2cINjUHziOvdwKEB7konw+rLNPTOlhK\ntK5dG9zN5E8CPnKraYC2tZB5NmJqFUDrq9P1YHWT6EdNsaHLlHHTG/pNrjklfZnl\nZJbwM23Y+3XAdlfKsXSPpskg+DPfxXL7cQTZVDsH+QKBgQDgmttFrHslaHl9pMUt\ny0DNRFHCkm3v5/bJ6lIC7F2MOtw2b48hpzjnvMsJbH6xxUWkQW4FYBpnzqa0YBXk\nwnH/eY+zq4FKQoMDhR75oPNBU6n5BPmTaB5wGjjI4MypjoC79iKaCZ6V6Px4+9ib\nOpoXUOty9LYTNTBB0Qube8BCjQKBgQDJ1IZswI+6LmHy/8zqQpciosBx6ITehQb6\n8X7u3K5mNz/SMxlS9C5YMTAKMefop9QPecaVC1XFiVnZou9LjfKVCeEr4/+1eSPF\nwFP5GJfT5WmWKHQtz0rZTFtSz1zwSAbz0buCIERNAOmF/xb26I3AC6mSy4tcxeHc\n+0pLBGwI4wKBgErWrotnrlzHk/uuhFj+6ae7xPZtLh6LDys2XX9F3OHV1vx4bZvM\nCWUF/i00rn5zegICHzPBUusV62wcvA7OT4fNrHk0g08IHHl2yNxqqcMxqmgkJTjd\nr46w3gzpAqjYp8J5gAwNen7+8+koGYOXojJ0rw9NxMFfrqWvjwuOz4AdAoGAe4PX\nXDif/NWj1d1b30UvTuABG/SrU65fbjVac/2TsTRAl3f0GIMc1ZYMi0CtZwFGUs44\njD/qlsAOv5TqEvfkq/bm2UBn3fwruzqPaVL2n5O3AVDygJJqgP8sqEoE23uI3a/N\nq73pbqKPRxSsTiBVl2DLvu1X9UeYiO80MSKcpvcCgYB295NMYiFwLtvaVk7kFhY3\nGuNTyuDD/sgMCsABDlJlG3KF2l4BWBO1BG1qHyRtmMrFjGHIV8BKDjjJLsT13REb\nVwFr+V0Jo+9f1yyjfpakrGTBO6eQJZhrJcGIkEVS3BVIC4pP0Hxt8UKlo/XtZbPN\n8n4ZEXdlalE56RzEsbuXHA==\n-----END PRIVATE KEY-----\n",
#     "client_email": "cru-ocr-service-account@cru-ocr.iam.gserviceaccount.com",
#     "client_id": "108232587703192834621",
#     "auth_uri": "https://accounts.google.com/o/oauth2/auth",
#     "token_uri": "https://oauth2.googleapis.com/token",
#     "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
#     "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/cru-ocr-service-account%40cru-ocr.iam.gserviceaccount.com",
#     "universe_domain": "googleapis.com",
# }

CREDENTIALS_INFO = {
    "type": "service_account",
    "project_id": "connect-card-scanner",
    "private_key_id": "54224814c69a155d8bd34128e83e373e0f1caa6f",
    "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDNCRYK1FfJAVaK\nMxznDAr+SFZfqfD6m3MiAfKHJk83cY9JerNOOhc2TwaP8FhZdRs/+2k0FE84Rms2\nUoa6XMSC7JhlobaRFVjtVxljim+ake19i6iGk1kI6/BUYwwfrd1Emw1Dy1eP0rC0\nRoX8gfurF8HR4k4SuFnsSB62f7ttOiP6e0PFxDJxuRG68ua6gRRjWRZf49KEMz5T\nVnWRNzwnUAfd7XuK1MdXnKWG4KWUtLbYa5bv5n47mV3JLc8nwbDZ0redZNeSYf5L\nj0CD/swoNBm8YLzhPoNGPt/2c77Y9Gj5d9Fo3Pg5VuMQXgzpsyCnFPv/sEJi/JXZ\nHkH9JXnzAgMBAAECggEAYcH2R32MyWKg702Fd0fPqgO1YvE021foogtJplSGqomz\nZrZg7WhXDubI2zId/bEPKAdn1pPkXZF9pq3cXNjEPSQvWS2sTSpfdvHzQfmMUqdH\nE3fWBywT5GQR9zouWqBcAkznGy7FdeZfp+SEF6ul4aJ3H+oFjXlmLnkIY70tENsw\nOBs6Q+ffipJXhv5AQ0fGJWLaJ9cywRgyXODfX3mg38M2M53wx25CyN9kSN1ua1W3\nKhziHPCw2zqtRyTUWiA1vPYpN9mCQgz5TLXIRv+6nuwowlIVI/zvpUt9pWZtec2x\n4LYp63XIlYvl37qckh/yuj8DTkRem+ks3eApEVas2QKBgQDm6RZ5bxpr0qT8GdvY\nm8WvwQwHnnwco+WfJEsjlKkDg3Nw6y1aDtS7+DmMwSI5U2Md2tX4y+zqBYHOdVNf\nVjvSEokQKTd3qEeTiJTDGZ49OsaPhnaouqYPyFk1p/loAh0+31rMlAE6Kxi3USwK\n2EpNi0gMApLnAMsoqgD7o/lubQKBgQDjUEUKUJ2jgOOVFwK6DKy/xOx6BJl12vhY\n+JGGNFtKwmMl9GmYaGcXbmlF2NfzAxO4uxdl11U/7LBAvFGQZLGMDfOJy7xcy+95\nzEjpTuHTxB8lTed2ILIyJOwfJRAQO11VB2R6uHbwIJMJWTDwyIv5EG5a+/ZPqErV\nixg0NJXN3wKBgGG874JfALP66VK8L040QSzvbYQcFTSaOyttVVCuMAwIq+hz4zJn\nbKxTmSh252GUZjPQ2RkCWDmGMzeMecm02oVEyzdH+u5vEDzmZvFd+pi4NCu0Iq2w\ns3Giv//yJaNcobxnFivZydsxOrj9ZsMAYhMIjWpn/H5C27tOmjPpaD7RAoGARrjk\nog7u3L3vEKW2HXhwDsIP6O6haD+WYOgFLsH/XUUZX+epKtfgqzOY4ThUB7F/Y0wi\nPXc/eMIFHD77CXeqna6BhO+0TRLOERDz5lK6hA5SumKAjwohJuTB6fa4BrTRlvDT\n3DKkHpWj6ZasWV2r3vOzwe7+dU4g6kt6XlO1//UCgYEAgcp1IdttP9Yj/P+ZQ3Ld\nd2Ujwu9EVtc0bVOtfpLXWi27Zva2+M5oUof1vLpHhSbnCnmz2E4D4JzxHRsMxsZG\n/LIaLjAGMpPYxgK5CSo5FU5KC9ZL3nNjE/2JXq/Cx9Ua7q0S3vvJ8HUxncrFaA/d\nfOeHHOIZTbRFwo0zCggO16g=\n-----END PRIVATE KEY-----\n",
    "client_email": "connect-card-scanner@connect-card-scanner.iam.gserviceaccount.com",
    "client_id": "114871390457241513072",
    "auth_uri": "https://accounts.google.com/o/oauth2/auth",
    "token_uri": "https://oauth2.googleapis.com/token",
    "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
    "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/connect-card-scanner%40connect-card-scanner.iam.gserviceaccount.com",
    "universe_domain": "googleapis.com",
}

CREDENTIALS = service_account.Credentials.from_service_account_info(
    CREDENTIALS_INFO,
    scopes=[
        "https://www.googleapis.com/auth/cloud-platform",
        "https://www.googleapis.com/auth/spreadsheets",
        "https://www.googleapis.com/auth/drive",
    ],
)

PROJECT_ID = "connect-card-scanner"
LOCATION = "us"
PROCESSOR_ID = "30861bab1d979b83"

# 1kzkUCcgvuS5AQ04fnivru93-G1RZIZnjxwLrRZUMccM

ALL_FIELDS_COMBINED = [
    "Name",
    "Phone",
    "Email",
    "Cadet",
    "Greek or Going Greek",
    "Transfer Student",
    "Military Veteran",
    "International Student",
    "Res Hall",
    "Room #",
    "Off Campus",
    "Fr",
    "So",
    "Jr",
    "Sr",
    "Grad Student",
    "Male",
    "Female",
    "Non Binary",
    "Spiritual Survey Yes",
    "Spiritual Survey No",
    "Spiritual Survey Maybe",
    "Social Event Yes",
    "Social Event No",
    "Social Event Maybe",
    "Small Group Yes",
    "Small Group No",
    "Small Group Maybe",
]

SHEET_COLUMNS = [
    "Timestamp",
    "Name",
    "Gender",
    "Year",
    "Phone Number",
    "Email",
    "Do any of these describe you?",
    "Do you live...",  # Off campus / On campus
    "Which Res Hall are you in?",
    "What is your room number?",
    "Giving your opinion in a campus wide spiritual survey",
    "Social Events with Cru",
    "A small group Bible Study",
    "Getting our Cru weekly email",  # if three 'yeses', then add this
]


def convert_df_to_cleaned_format(df):
    """Convert dataframe to cleaned format"""
    # df = pd.DataFrame([list(dict_values)], columns=ALL_FIELDS_COMBINED)

    # Year processing
    year_map = {
        "Fr": "Freshman",
        "So": "Sophomore",
        "Jr": "Junior",
        "Sr": "Senior",
        "Grad Student": "Graduate Student",
    }
    df["Year"] = df.apply(
        lambda row: next(
            (
                year
                for year in [
                    "Fr",
                    "So",
                    "Jr",
                    "Sr",
                    "Grad Student",
                ]
                if row[year]
            ),
            "",
        ),
        axis=1,
    )
    df["Year"] = df["Year"].map(year_map)
    df.drop(
        columns=["Fr", "So", "Jr", "Sr", "Grad Student"],
        inplace=True,
    )

    # Add timestamp
    df["Timestamp"] = pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S")

    # Combine Male and Female into Gender
    df["Gender"] = df.apply(
        lambda row: next(
            (gender for gender in ["Male", "Female", "Non Binary"] if row[gender]), ""
        ),
        axis=1,
    )
    df.drop(columns=["Male", "Female", "Non Binary"], inplace=True)

    # Combine Small Group Yes, No, Maybe into one column
    df["A small group Bible Study"] = df.apply(
        lambda row: "Yes"
        if row["Small Group Yes"]
        else (
            "No"
            if row["Small Group No"]
            else ("Maybe" if row["Small Group Maybe"] else "")
        ),
        axis=1,
    )
    df.drop(
        columns=["Small Group Yes", "Small Group No", "Small Group Maybe"], inplace=True
    )

    # Combine Social Event Yes, No, Maybe into one column
    df["Social Events with Cru"] = df.apply(
        lambda row: "Yes"
        if row["Social Event Yes"]
        else (
            "No"
            if row["Social Event No"]
            else ("Maybe" if row["Social Event Maybe"] else "")
        ),
        axis=1,
    )
    df.drop(
        columns=["Social Event Yes", "Social Event No", "Social Event Maybe"],
        inplace=True,
    )

    # Combine Spiritual Survey Yes, No, Maybe into one column
    df["Giving your opinion in a campus wide spiritual survey"] = df.apply(
        lambda row: "Yes"
        if row["Spiritual Survey Yes"]
        else (
            "No"
            if row["Spiritual Survey No"]
            else ("Maybe" if row["Spiritual Survey Maybe"] else "")
        ),
        axis=1,
    )
    df.drop(
        columns=[
            "Spiritual Survey Yes",
            "Spiritual Survey No",
            "Spiritual Survey Maybe",
        ],
        inplace=True,
    )

    df["Do any of these describe you?"] = df.apply(
        lambda row: ", ".join(
            [
                field
                for field in [
                    "Cadet",
                    "Greek or Going Greek",
                    "Transfer Student",
                    "Military Veteran",
                    "International Student",
                ]
                if row[field]
            ]
        ),
        axis=1,
    )
    df.drop(
        columns=[
            "Cadet",
            "Greek or Going Greek",
            "Transfer Student",
            "Military Veteran",
            "International Student",
        ],
        inplace=True,
    )

    # Res Hall processing
    res_hall_map = {
        "cochrange": "Cochrane",
        "cid": "Creativity & Innovation District",
        "creativity and innovation district": "Creativity & Innovation District",
        "creativity & innovation district": "Creativity & Innovation District",
        "east aj": "EAJ",
        "eaj": "EAJ",
        "east campbell": "East Campbell",
        "east egg": "East Eggleston",
        "east eggleston": "East Eggleston",
        "donaldson brown": "GLC",
        "graduate life center": "GLC",
        "graduate life center at donaldson brown": "GLC",
        "glc": "GLC",
        "harper": "Harper",
        "hoge": "Hoge",
        "hillcrest": "Hillcrest",
        "johnson": "Johnson",
        "johnson hall": "Johnson",
        "main campbell": "Main Campbell",
        "main egg": "Main Eggleston",
        "main eggleston": "Main Eggleston",
        "miles": "Miles",
        "new hall": "New Hall West",
        "new hall west": "New Hall West",
        "nhw": "New Hall West",
        "new res": "New Res East",
        "new res east": "New Res East",
        "nre": "New Res East",
        "shag": "OShag",
        "oshag": "OShag",
        "oshaughnessy": "OShag",
        "payne": "Payne",
        "pearson - east": "Pearson - East",
        "pearson-east": "Pearson - East",
        "pe": "Pearson - East",
        "ep": "Pearson - East",
        "phe": "Pearson - East",
        "pearson - west": "Pearson - West",
        "pearson-west": "Pearson - West",
        "pw": "Pearson - West",
        "wp": "Pearson - West",
        "phw": "Pearson - West",
        "py": "PY",
        "p-y": "PY",
        "peddrew-yates": "PY",
        "peddrew yates": "PY",
        "p.y.": "PY",
        "slusher tower": "Slusher Tower",
        "slusher": "Slusher Tower",
        "slusher wing": "Slusher Wing",
        "upper quad north": "Upper Quad North",
        "uqhn": "Upper Quad North",
        "uqn": "Upper Quad North",
        "vawter": "Vawter",
        "west aj": "WAJ",
        "waj": "WAJ",
        "west egg": "West Eggleston",
        "west eggleston": "West Eggleston",
        "whitehurst": "Whitehurst",
    }
    df["Which Res Hall are you in?"] = (
        df["Res Hall"]
        .str.lower()
        .str.strip()
        .str.replace("'", "")
        .replace(".", "")
        .replace("\n", " ")
        .map(res_hall_map)
        .fillna(df["Res Hall"])
    )
    df.drop(columns=["Res Hall"], inplace=True)

    df["Getting our Cru weekly email"] = df.apply(
        lambda row: "Yes"
        if all(
            row[field] == "Yes"
            for field in [
                "A small group Bible Study",
                "Social Events with Cru",
                "Giving your opinion in a campus wide spiritual survey",
            ]
        )
        else "No",
        axis=1,
    )

    df["Phone Number"] = df["Phone"][:10]  # keep only first 10 digits
    df.drop(columns=["Phone"], inplace=True)

    df["Do you live..."] = df.apply(
        lambda row: "On Campus" if not row["Off Campus"] else "Off Campus", axis=1
    )
    df.drop(columns=["Off Campus"], inplace=True)

    df["What is your room number?"] = df["Room #"]
    df.drop(columns=["Room #"], inplace=True)

    df = df.replace({"☐": "", None: ""})

    # reorder columns to match SHEET_COLUMNS
    df = df[SHEET_COLUMNS]

    return df


def upload_to_google_sheets(df):
    """Uploads the edited DataFrame to a Google Sheet by appending to existing data."""

    df = convert_df_to_cleaned_format(df)

    spreadsheet_name = "AI Scanning Hold"
    worksheet_name = "2025-2026"

    # Authenticate with Google Sheets
    gc = gspread.authorize(CREDENTIALS)

    # Open the Google Sheet
    try:
        spreadsheet = gc.open(spreadsheet_name)
    except gspread.SpreadsheetNotFound:
        spreadsheet = gc.create(spreadsheet_name)

    # Select the worksheet
    try:
        worksheet = spreadsheet.worksheet(worksheet_name)
    except gspread.WorksheetNotFound:
        worksheet = spreadsheet.add_worksheet(
            title=worksheet_name, rows="100", cols="20"
        )

    # Check if the worksheet is empty or has headers
    existing_data = worksheet.get_all_values()
    df_headers = df.columns.values.tolist()

    if not existing_data:
        # If worksheet is empty, add headers first, then all data rows
        all_data = [df_headers] + df.values.tolist()
        worksheet.update(all_data)
        return f"Data uploaded successfully to {spreadsheet_name} - {worksheet_name} (new sheet with headers). Added {len(df)} rows."
    else:
        # Check if headers exist and match
        existing_headers = existing_data[0]

        if existing_headers == df_headers:
            # Headers match exactly, append all data rows
            for _, row in df.iterrows():
                worksheet.append_row(row.tolist())
            return f"Data appended successfully to {spreadsheet_name} - {worksheet_name}. Added {len(df)} rows."

        elif len(existing_headers) == len(df_headers) and all(
            h.strip() for h in existing_headers
        ):
            # Sheet has headers but they don't match exactly
            # Create a mapping to ensure data goes to correct columns
            header_mapping = {}

            # Try to map columns by matching header names (case-insensitive, strip whitespace)
            for i, df_header in enumerate(df_headers):
                for j, existing_header in enumerate(existing_headers):
                    if df_header.strip().lower() == existing_header.strip().lower():
                        header_mapping[i] = j
                        break

            if len(header_mapping) == len(df_headers):
                # All columns can be mapped
                for _, row in df.iterrows():
                    # Reorder the row data to match existing column order
                    reordered_row = [""] * len(existing_headers)
                    for df_col_idx, existing_col_idx in header_mapping.items():
                        reordered_row[existing_col_idx] = row.iloc[df_col_idx]
                    worksheet.append_row(reordered_row)
                return f"Data appended successfully to {spreadsheet_name} - {worksheet_name}. Added {len(df)} rows (columns reordered to match existing headers)."
            else:
                # Cannot map all columns - add headers and data anyway but with warning
                # First add the new headers as a comment row or handle differently
                for _, row in df.iterrows():
                    worksheet.append_row(row.tolist())
                return f"Data appended to {spreadsheet_name} - {worksheet_name}. Added {len(df)} rows (WARNING: Column headers don't match existing headers)."

        else:
            # Sheet appears to be empty (no real headers) or has different number of columns
            # Treat as empty and add headers
            worksheet.clear()
            all_data = [df_headers] + df.values.tolist()
            worksheet.update(all_data)
            return f"Data uploaded successfully to {spreadsheet_name} - {worksheet_name} (replaced existing data with headers). Added {len(df)} rows."