File size: 28,423 Bytes
0e4b9ff
e7e5c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e4b9ff
e7e5c6f
 
 
 
 
 
0e4b9ff
 
e7e5c6f
 
 
 
 
 
f2a46b0
e7e5c6f
 
17f3068
5ad23b0
17f3068
b06c491
e7e5c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e4b9ff
e7e5c6f
 
 
 
 
0e4b9ff
e7e5c6f
 
 
 
 
 
 
 
 
 
 
 
 
0e4b9ff
e7e5c6f
 
 
 
 
 
0e4b9ff
e7e5c6f
 
0e4b9ff
e7e5c6f
 
 
 
 
 
 
 
0e4b9ff
e7e5c6f
 
0e4b9ff
 
e7e5c6f
 
0e4b9ff
 
e7e5c6f
 
 
 
 
 
0e4b9ff
e7e5c6f
 
 
0e4b9ff
e7e5c6f
 
 
 
 
 
 
 
 
 
 
 
 
0e4b9ff
e7e5c6f
 
 
 
 
0e4b9ff
 
e7e5c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c728682
e7e5c6f
 
 
 
 
 
 
 
0e4b9ff
e7e5c6f
0e4b9ff
 
 
e7e5c6f
0e4b9ff
 
e7e5c6f
 
 
 
0e4b9ff
 
 
 
 
e7e5c6f
0e4b9ff
 
e7e5c6f
 
0e4b9ff
 
e7e5c6f
29665a2
 
 
 
e7e5c6f
0e4b9ff
e7e5c6f
0e4b9ff
 
 
 
 
 
29665a2
0e4b9ff
 
 
 
 
 
29665a2
0e4b9ff
 
29665a2
 
0e4b9ff
 
29665a2
 
0e4b9ff
 
 
 
29665a2
0e4b9ff
29665a2
0e4b9ff
 
 
 
 
 
e7e5c6f
0e4b9ff
 
 
 
 
e7e5c6f
0e4b9ff
 
 
 
 
 
 
 
 
 
 
 
 
 
e7e5c6f
0e4b9ff
 
 
 
 
e7e5c6f
0e4b9ff
29665a2
 
 
 
e7e5c6f
 
56f8ae3
c728682
29665a2
c728682
 
 
 
 
 
29665a2
 
 
c728682
 
29665a2
c728682
 
 
 
29665a2
56f8ae3
29665a2
 
56f8ae3
29665a2
 
56f8ae3
29665a2
 
56f8ae3
 
 
 
29665a2
56f8ae3
29665a2
 
56f8ae3
29665a2
56f8ae3
29665a2
56f8ae3
29665a2
 
 
 
e7e5c6f
 
3903d80
 
 
 
 
 
 
 
 
0e4b9ff
 
ddbc15b
 
 
 
9c0f969
0e4b9ff
 
57035a7
0e4b9ff
57035a7
0e4b9ff
 
57035a7
 
0e4b9ff
57035a7
 
0e4b9ff
57035a7
0e4b9ff
 
 
 
 
57035a7
29665a2
 
0e4b9ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c0f969
e7e5c6f
0e4b9ff
 
57035a7
e7e5c6f
0e4b9ff
 
 
 
 
 
 
e7e5c6f
0e4b9ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c728682
 
0e4b9ff
 
 
c728682
 
0e4b9ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7e5c6f
0e4b9ff
 
 
 
 
 
 
 
 
9c0f969
2a93ac8
0e4b9ff
d099a7c
0e4b9ff
d099a7c
0e4b9ff
d099a7c
0e4b9ff
 
 
 
 
 
 
d099a7c
 
2a93ac8
8a09c11
9c0f969
2a93ac8
 
 
 
 
 
 
9c0f969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d099a7c
 
 
 
 
ddbc15b
2a93ac8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# app.py - Combined Script
# Combined Imports
import os
import gradio as gr
from huggingface_hub import InferenceClient
import torch
import re
import warnings
import time
import json
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer, util, CrossEncoder
import gspread
# from google.colab import auth
from google.auth import default
from tqdm import tqdm
from ddgs import DDGS # Updated import
import spacy
from datetime import date, timedelta, datetime # Import datetime
from dateutil.relativedelta import relativedelta # Corrected typo
import traceback # Import traceback
import base64 # Import base64
import dateparser # Import dateparser
from dateparser.search import search_dates
import pytz # Import pytz for timezone handling
# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Define global variables and load secrets
HF_TOKEN = os.getenv("HF_TOKEN")
# Add a print statement to check if HF_TOKEN is loaded
print(f"HF_TOKEN loaded: {'*' * len(HF_TOKEN) if HF_TOKEN else 'None'}")
SHEET_ID = "19ipxC2vHYhpXCefpxpIkpeYdI43a1Ku2kYwecgUULIw"
GOOGLE_BASE64_CREDENTIALS = os.getenv("GOOGLE_BASE64_CREDENTIALS")
# Initialize InferenceClient
# client = InferenceClient("google/gemma-2-9b-it", token=HF_TOKEN)
# client = InferenceClient("meta-llama/Llama-4-Scout-17B-16E-Instruct", token=HF_TOKEN)

client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct", token=HF_TOKEN)
# Load spacy model for sentence splitting
nlp = None
try:
    nlp = spacy.load("en_core_web_sm")
    print("SpaCy model 'en_core_web_sm' loaded.")
except OSError:
    print("SpaCy model 'en_core_web_sm' not found. Downloading...")
    try:
        os.system("python -m spacy download en_core_web_sm")
        nlp = spacy.load("en_core_web_sm")
        print("SpaCy model 'en_core_web_sm' downloaded and loaded.")
    except Exception as e:
        print(f"Failed to download or load SpaCy model: {e}")
# Load SentenceTransformer for RAG/business info retrieval and semantic detection
embedder = None
try:
    print("Attempting to load Sentence Transformer (sentence-transformers/paraphrase-MiniLM-L6-v2)...")
    # Use the model provided by the user for semantic detection as well
    embedder = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L6-v2") # Or 'all-MiniLM-L6-v2' if preferred
    print("Sentence Transformer loaded.")
except Exception as e:
     print(f"Error loading Sentence Transformer: {e}")
# Load a Cross-Encoder model for re-ranking retrieved documents
reranker = None
try:
    print("Attempting to load Cross-Encoder Reranker (cross-encoder/ms-marco-MiniLM-L6-v2)...")
    reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
    print("Cross-Encoder Reranker loaded.")
except Exception as e:
    print(f"Error loading Cross-Encoder Reranker: {e}")
    print("Please ensure the model identifier 'cross-encoder/ms-marco-MiniLM-L6-v2' is correct and accessible on Hugging Face Hub.")
    print(traceback.format_exc())
    reranker = None
# Google Sheets Authentication
gc = None # Global variable for gspread client
def authenticate_google_sheets():
    """Authenticates with Google Sheets using base64 encoded credentials."""
    global gc
    print("Authenticating Google Account...")
    if not GOOGLE_BASE64_CREDENTIALS:
        print("Error: GOOGLE_BASE64_CREDENTIALS secret not found.")
        return False
    try:
        # Decode the base64 credentials
        credentials_json = base64.b64decode(GOOGLE_BASE64_CREDENTIALS).decode('utf-8')
        credentials = json.loads(credentials_json)
        # Authenticate using service account from dictionary
        gc = gspread.service_account_from_dict(credentials)
        print("Google Sheets authentication successful via service account.")
        return True
    except Exception as e:
        print(f"Google Sheets authentication failed: {e}")
        print("Please ensure your GOOGLE_BASE64_CREDENTIALS secret is correctly set and contains valid service account credentials.")
        print(traceback.format_exc())
        return False
# Google Sheets Data Loading and Embedding
data = [] # Global variable to store loaded data
descriptions_for_embedding = []
embeddings = torch.tensor([])
business_info_available = False # Flag to indicate if business info was loaded successfully
def load_business_info():
    """Loads business information from Google Sheet and creates embeddings."""
    global data, descriptions_for_embedding, embeddings, business_info_available
    business_info_available = False # Reset flag
    if gc is None:
        print("Skipping Google Sheet loading: Google Sheets client not authenticated.")
        return
    if not SHEET_ID:
         print("Error: SHEET_ID not set.")
         return
    try:
        sheet = gc.open_by_key(SHEET_ID).sheet1
        print(f"Successfully opened Google Sheet with ID: {SHEET_ID}")
        data_records = sheet.get_all_records()
        if not data_records:
            print(f"Warning: No data records found in Google Sheet with ID: {SHEET_ID}")
            data = []
            descriptions_for_embedding = []
        else:
            # Filter out rows missing 'Service' or 'Description'
            filtered_data = [row for row in data_records if row.get('Service') and row.get('Description')]
            if not filtered_data:
                print("Warning: Filtered data is empty after checking for 'Service' and 'Description'.")
                data = []
                descriptions_for_embedding = []
            else:
                data = filtered_data
                # Use BOTH Service and Description for embedding
                descriptions_for_embedding = [f"Service: {row['Service']}. Description: {row['Description']}" for row in data]
                # Only encode if descriptions_for_embedding are found and embedder is available
                if descriptions_for_embedding and embedder is not None:
                    print("Encoding descriptions...")
                    try:
                        embeddings = embedder.encode(descriptions_for_embedding, convert_to_tensor=True)
                        print("Encoding complete.")
                        business_info_available = True
                    except Exception as e:
                        print(f"Error during description encoding: {e}")
                        embeddings = torch.tensor([])
                        business_info_available = False
                else:
                    print("Skipping encoding descriptions: No descriptions found or embedder not available.")
                    embeddings = torch.tensor([])
                    business_info_available = False
        print(f"Loaded {len(descriptions_for_embedding)} entries from Google Sheet for embedding/RAG.")
        if not business_info_available:
            print("Business information retrieval (RAG) is NOT available.")
    except gspread.exceptions.SpreadsheetNotFound:
        print(f"Error: Google Sheet with ID '{SHEET_ID}' not found.")
        print("Please check the SHEET_ID and ensure your authenticated Google Account has access to this sheet.")
        business_info_available = False
    except Exception as e:
        print(f"An error occurred while accessing the Google Sheet: {e}")
        print(traceback.format_exc())
        business_info_available = False
# Business Info Retrieval (RAG)
def retrieve_business_info(query: str, top_n: int = 3) -> list:
    """
    Retrieves relevant business information from loaded data based on a query.
    Args:
        query: The user's query string.
        top_n: The number of top relevant entries to retrieve.
    Returns:
        A list of dictionaries, where each dictionary is a relevant row from the
        Google Sheet data. Returns an empty list if RAG is not available or
        no relevant information is found.
    """
    global data
    if not business_info_available or embedder is None or not descriptions_for_embedding or not data:
        print("Business information retrieval is not available or data is empty.")
        return []
    try:
        query_embedding = embedder.encode(query, convert_to_tensor=True)
        cosine_scores = util.cos_sim(query_embedding, embeddings)[0]
        top_results_indices = torch.topk(cosine_scores, k=min(top_n, len(data)))[1].tolist()
        top_results = [data[i] for i in top_results_indices]
        if reranker is not None and top_results:
            print("Re-ranking top results...")
            rerank_pairs = [(query, descriptions_for_embedding[i]) for i in top_results_indices]
            rerank_scores = reranker.predict(rerank_pairs)
            reranked_indices = sorted(range(len(rerank_scores)), key=lambda i: rerank_scores[i], reverse=True)
            reranked_results = [top_results[i] for i in reranked_indices]
            print("Re-ranking complete.")
            return reranked_results
        else:
            return top_results
    except Exception as e:
        print(f"Error during business information retrieval: {e}")
        print(traceback.format_exc())
        return []
# Function to perform DuckDuckGo Search and return results with URLs
def perform_duckduckgo_search(query: str, max_results: int = 5): # Reduced max_results for multi-part queries
    """
    Performs a search using DuckDuckGo and returns a list of dictionaries.
    Includes a delay to avoid rate limits.
    Returns an empty list and prints an error if search fails.
    """
    print(f"Executing Tool: perform_duckduckgo_search with query='{query}')")
    search_results_list = []
    try:
        time.sleep(1)
        with DDGS() as ddgs:
            search_query = query.strip()
            if not search_query or len(search_query.split()) < 2:
                 print(f"Skipping search for short query: '{search_query}'")
                 return []
            print(f"Sending search query to DuckDuckGo: '{search_query}'")
            results_generator = ddgs.text(search_query, max_results=max_results)
            results_found = False
            for r in results_generator:
                search_results_list.append(r)
                results_found = True
            print(f"Raw results from DuckDuckGo: {search_results_list}")
            if not results_found and max_results > 0:
                 print(f"DuckDuckGo search for '{search_query}' returned no results.")
            elif results_found:
                 print(f"DuckDuckGo search for '{search_query}' completed. Found {len(search_results_list)} results.")
    except Exception as e:
        print(f"Error during Duckduckgo search for '{search_query if 'search_query' in locals() else query}': {e}")
        print(traceback.format_exc())
        return []
    return search_results_list
# Define the new semantic date/time detection and calculation function using dateparser
def perform_date_calculation(query: str) -> str or None:
    """
    Analyzes query for date/time information using dateparser.
    If dateparser finds a date, it returns a human-friendly response string.
    Otherwise, it returns None.
    It is designed to handle multiple languages and provide the time for East Africa (Tanzania).
    """
    print(f"Executing Tool: perform_date_calculation with query='{query}') using dateparser.search_dates")
    try:
        eafrica_tz = pytz.timezone('Africa/Dar_es_Salaam')
        now = datetime.now(eafrica_tz)
    except pytz.UnknownTimeZoneError:
        print("Error: Unknown timezone 'Africa/Dar_es_Salaam'. Using default system time.")
        now = datetime.now()
    try:
        # Try parsing with Swahili first, then English
        found = search_dates(
            query,
            settings={
                "PREFER_DATES_FROM": "future",
                "RELATIVE_BASE": now
            },
            languages=['sw', 'en'] # Prioritize Swahili
        )
        if not found:
            print("dateparser.search_dates could not parse any date/time.")
            return None
        text_snippet, parsed = found[0]
        print(f"dateparser.search_dates found: text='{text_snippet}', parsed='{parsed}'")
        is_swahili = any(swahili_phrase in query.lower() for swahili_phrase in ['tarehe', 'siku', 'saa', 'muda', 'leo', 'kesho', 'jana', 'ngapi', 'gani', 'mwezi', 'mwaka'])
        # Handle timezone information
        if now.tzinfo is not None and parsed.tzinfo is None:
            parsed = now.tzinfo.localize(parsed)
        elif now.tzinfo is None and parsed.tzinfo is not None:
             parsed = parsed.replace(tzinfo=None)
        # Check if the parsed date is today and time is close to now or midnight
        if parsed.date() == now.date():
             # Consider it "now" if within a small time window or if no specific time was parsed (midnight)
             if abs((parsed - now).total_seconds()) < 60 or parsed.time() == datetime.min.time():
                 print("Query parsed to today's date and time is close to 'now' or midnight, returning current time/date.")
                 if is_swahili:
                     return f"Kwa saa za Afrika Mashariki (Tanzania), tarehe ya leo ni {now.strftime('%A, %d %B %Y')} na saa ni {now.strftime('%H:%M:%S')}."
                 else:
                     return f"In East Africa (Tanzania), the current date is {now.strftime('%A, %d %B %Y')} and the time is {now.strftime('%H:%M:%S')}."
             else:
                  print(f"Query parsed to a specific time today: {parsed.strftime('%H:%M:%S')}")
                  if is_swahili:
                       return f"Hiyo inafanyika leo, {parsed.strftime('%A, %d %B %Y')}, saa {parsed.strftime('%H:%M:%S')} saa za Afrika Mashariki."
                  else:
                       return f"That falls on today, {parsed.strftime('%A, %d %B %Y')}, at {parsed.strftime('%H:%M:%S')} East Africa Time."
        else:
            print(f"Query parsed to a specific date: {parsed.strftime('%A, %d %B %Y')} at {parsed.strftime('%H:%M:%S')}")
            time_str = parsed.strftime('%H:%M:%S')
            date_str = parsed.strftime('%A, %d %B %Y')
            if parsed.tzinfo:
                 tz_name = parsed.tzinfo.tzname(parsed) or 'UTC'
                 if is_swahili:
                     return f"Hiyo inafanyika tarehe {date_str} saa {time_str} {tz_name}."
                 else:
                      return f"That falls on {date_str} at {time_str} {tz_name}."
            else:
                 if is_swahili:
                      return f"Hiyo inafanyika tarehe {date_str} saa {time_str}."
                 else:
                      return f"That falls on {date_str} at {time_str}."
    except Exception as e:
        print(f"Error during dateparser.search_dates execution: {e}")
        print(traceback.format_exc())
        return f"An error occurred while parsing date/time: {e}"
# Function to determine if a query requires a tool or can be answered directly
def determine_tool_usage(query: str) -> str:
    """
    Analyzes the query to determine if a specific tool is needed.
    Returns the name of the tool ('duckduckgo_search', 'business_info_retrieval',
    'date_calculation') or 'none' if no specific tool is clearly indicated.
    Prioritizes business information retrieval, then specific tools based on keywords
    and LLM judgment.
    """
    query_lower = query.lower()
    # 1. Prioritize Business Info Retrieval if RAG is available
    if business_info_available:
         messages_business_check = [{"role": "user", "content": f"Does the following query ask about a specific person, service, offering, or description that is likely to be found *only* within a specific business's internal knowledge base, and not general knowledge? For example, questions about 'Salum' or 'Jackson Kisanga' are likely business-related, while questions about 'the current president of the USA' or 'who won the Ballon d'Or' are general knowledge. Answer only 'yes' or 'no'. Query: {query}"}]
         try:
             business_check_response = client.chat_completion(
                 messages=messages_business_check,
                 max_tokens=10,
                 temperature=0.1
             ).choices[0].message.content.strip().lower()
             # Ensure the response explicitly contains "yes" and is not just a substring match
             if business_check_response == "yes":
                 print(f"Detected as specific business info query based on LLM check: '{query}'")
                 return "business_info_retrieval"
             else:
                 print(f"LLM check indicates not a specific business info query: '{query}'")
         except Exception as e:
             print(f"Error during LLM call for business info check for query '{query}': {e}")
             print(traceback.format_exc())
             print(f"Proceeding without business info check for query '{query}' due to error.")
    # 2. Check for Date Calculation
    date_time_check_result = perform_date_calculation(query)
    if date_time_check_result is not None:
        print(f"Detected as date/time calculation query based on dateparser result for: '{query}'")
        return "date_calculation"
    # 3. Use LLM to determine if DuckDuckGo search is needed
    messages_tool_determination_search = [{"role": "user", "content": f"Does the following query require searching the web for current or general knowledge information (e.g., news, facts, definitions, current events)? Respond ONLY with 'duckduckgo_search' or 'none'. Query: {query}"}]
    try:
        search_determination_response = client.chat_completion(
            messages=messages_tool_determination_search,
            max_tokens=20,
            temperature=0.1,
            top_p=0.9
        ).choices[0].message.content or ""
        response_lower = search_determination_response.strip().lower()
        if "duckduckgo_search" in response_lower:
            print(f"Model-determined tool for '{query}': 'duckduckgo_search'")
            return "duckduckgo_search"
        else:
            print(f"Model-determined tool for '{query}': 'none' (for search)")
    except Exception as e:
        print(f"Error during LLM call for search tool determination for query '{query}': {e}")
        print(traceback.format_exc())
        print(f"Proceeding without search tool check for query '{query}' due to error.")
    # 4. If none of the specific tools are determined, default to 'none'
    print(f"No specific tool determined for '{query}'. Defaulting to 'none'.")
    return "none"


# Function to generate text using the LLM, incorporating tool results if available
def generate_text(prompt: str, tool_results: dict = None) -> str:
    """
    Generates text using the configured LLM, optionally incorporating tool results.
    Args:
        prompt: The initial prompt for the LLM.
        tool_results: A dictionary containing results from executed tools.
                      Keys are tool names, values are their outputs.
    Returns:
        The generated text from the LLM.
    """
    # Add persona instructions to the beginning of the prompt
    persona_instructions = """You are absa_ai, an AI developed on August 7, 2025, by the absa team. Your knowledge about business data comes from the company's internal Google Sheet.
"""
    full_prompt_builder = [persona_instructions, prompt]

    if tool_results and any(tool_results.values()):
        full_prompt_builder.append("\n\nTool Results:\n")
        for question, results in tool_results.items(): # Iterate through results per question
            if results:
                full_prompt_builder.append(f"--- Results for: {question} ---\n") # Add question context
                if isinstance(results, list):
                    for i, result in enumerate(results):
                         # Check if the result is from business info retrieval
                         if isinstance(result, dict) and 'Service' in result and 'Description' in result:
                             full_prompt_builder.append(f"Business Info {i+1}:\nService: {result.get('Service', 'N/A')}\nDescription: {result.get('Description', 'N/A')}\n\n")
                         elif isinstance(result, dict) and 'url' in result: # Check if the result is from DuckDuckGo
                             full_prompt_builder.append(f"Search Result {i+1}:\nTitle: {result.get('title', 'N/A')}\nURL: {result.get('url', 'N/A')}\nSnippet: {result.get('body', 'N/A')}\n\n")
                         else:
                              full_prompt_builder.append(f"{result}\n\n") # Handle other list items
                elif isinstance(results, dict):
                     for key, value in results.items():
                         full_prompt_builder.append(f"{key}: {value}\n")
                     full_prompt_builder.append("\n")
                else:
                     full_prompt_builder.append(f"{results}\n\n") # Handle single string results (like date calculation)
        full_prompt_builder.append("Based on the provided tool results, answer the user's original query. If a question was answered by a tool, use the tool's result directly in your response.")
        print("Added tool results and instruction to final prompt.")
    else:
        print("No tool results to add to final prompt.")
    full_prompt = "".join(full_prompt_builder)
    print(f"Sending prompt to LLM:\n---\n{full_prompt}\n---")
    generation_config = {
        "temperature": 0.7,
        "max_new_tokens": 500,
        "top_p": 0.95,
        "top_k": 50,
        "do_sample": True,
    }
    try:
        response = client.chat_completion(
            messages=[
                {"role": "user", "content": full_prompt}
            ],
            max_tokens=generation_config.get("max_new_tokens", 512),
            temperature=generation_config.get("temperature", 0.7),
            top_p=generation_config.get("top_p", 0.95)
        ).choices[0].message.content or ""
        print("LLM generation successful using chat_completion.")
        return response
    except Exception as e:
        print(f"Error during final LLM generation: {e}")
        print(traceback.format_exc())
        return "An error occurred while generating the final response."
# Main chat function with query breakdown and tool execution per question
def chat(query: str):
    """
    Processes user queries by breaking down multi-part queries, determining and
    executing appropriate tools for each question, and synthesizing results
    using the LLM. Prioritizes business information retrieval.
    """
    print(f"Received query: {query}")
    # Step 1: Query Breakdown
    print("\n--- Breaking down query ---")
    prompt_for_question_breakdown = f"""
Analyze the following query and list each distinct question found within it.
Present each question on a new line, starting with a hyphen.
Query: {query}
"""
    try:
        messages_question_breakdown = [{"role": "user", "content": prompt_for_question_breakdown}]
        question_breakdown_response = client.chat_completion(
            messages=messages_question_breakdown,
            max_tokens=100,
            temperature=0.1,
            top_p=0.9
        ).choices[0].message.content or ""
        individual_questions = [line.strip() for line in question_breakdown_response.split('\n') if line.strip()]
        cleaned_questions = [re.sub(r'^[-*]?\s*', '', q) for q in individual_questions]
        print("Individual questions identified:")
        for q in cleaned_questions:
            print(f"- {q}")
    except Exception as e:
        print(f"Error during LLM call for question breakdown: {e}")
        print(traceback.format_exc())
        cleaned_questions = [query] # Fallback to treating the whole query as one question
    # Step 2: Tool Determination per Question
    print("\n--- Determining tools per question ---")
    determined_tools = {}
    for question in cleaned_questions:
        print(f"\nAnalyzing question for tool determination: '{question}'")
        determined_tools[question] = determine_tool_usage(question)
        print(f"Determined tool for '{question}': '{determined_tools[question]}'")
    print("\nSummary of determined tools per question:")
    for question, tool in determined_tools.items():
        print(f"'{question}': '{tool}'")
    # Step 3: Execute Tools and Step 4: Synthesize Results
    print("\n--- Executing tools and collecting results ---")
    tool_results = {}
    for question, tool in determined_tools.items():
        print(f"\nExecuting tool '{tool}' for question: '{question}'")
        result = None
        if tool == "date_calculation":
            result = perform_date_calculation(question)
        elif tool == "duckduckgo_search":
            result = perform_duckduckgo_search(question)
        elif tool == "business_info_retrieval":
            result = retrieve_business_info(question)
        elif tool == "none":
             # If tool is 'none', the LLM will answer this part using its internal knowledge
             # in the final response generation step. We don't need a specific tool result here.
             print(f"Skipping tool execution for question: '{question}' as tool is 'none'. LLM will handle.")
             result = None # Set result to None so it's not included in tool_results for 'none' tool
        # Only store results if they are not None (i.e., tool was executed and returned something)
        if result is not None:
             tool_results[question] = result
    print("\n--- Collected Tool Results ---")
    if tool_results:
        for question, result in tool_results.items():
            print(f"\nQuestion: {question}")
            print(f"Result: {result}")
    else:
        print("No tool results were collected.")
    print("\n--------------------------")
    # Step 5: Final Response Generation
    print("\n--- Generating final response ---")
    # The generate_text function already handles incorporating tool results if provided
    final_response = generate_text(query, tool_results)
    print("\n--- Final Response from LLM ---")
    print(final_response)
    print("\n----------------------------")
    return final_response
# Keep the Gradio interface setup as is for now
if __name__ == "__main__":
    # Authenticate Google Sheets when the script starts
    authenticate_google_sheets()
    # Load business info after authentication
    load_business_info()
    # Check if spacy model, embedder, and reranker loaded correctly
    if nlp is None:
        print("Warning: SpaCy model not loaded. Sentence splitting may not work correctly.")
    if embedder is None:
        print("Warning: Sentence Transformer (embedder) not loaded. RAG will not be available.")
    if reranker is None:
        print("Warning: Cross-Encoder Reranker not loaded. Re-ranking of RAG results will not be performed.")
    if not business_info_available:
        print("Warning: Business information (Google Sheet data) not loaded successfully. "
              "RAG will not be available. Please ensure the GOOGLE_BASE64_CREDENTIALS secret is set correctly.")
    print("Launching Gradio Interface...")
    import gradio as gr
    with gr.Blocks(theme="soft") as demo:
        gr.Markdown(
            """
            # LLM with Tools (DuckDuckGo Search, Date Calculation, Business Info RAG)
            Ask me anything! I can perform web searches, calculate dates, and retrieve business information.
            """
        )
        with gr.Row():
            with gr.Column(scale=3):
                query = gr.Textbox(
                    label="Query",
                    placeholder="Enter your query here....",
                    lines=3,
                    interactive=True
                )
                submit_btn = gr.Button("Submit")
                clear_btn = gr.Button("Clear")
            with gr.Column(scale=3):
                output = gr.Textbox(
                    label="Output",
                    lines=8,
                    interactive=False
                )
        # Button actions
        submit_btn.click(fn=chat, inputs=query, outputs=output)
        clear_btn.click(fn=lambda: "", inputs=None, outputs=output)
    try:
        demo.launch(debug=True)
    except Exception as e:
        print(f"Error launching Gradio interface: {e}")
        print(traceback.format_exc())
        print("Please check the console output for more details on the error.")