Spaces:
Running
Running
File size: 28,423 Bytes
0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f f2a46b0 e7e5c6f 17f3068 5ad23b0 17f3068 b06c491 e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f c728682 e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 29665a2 e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff 29665a2 0e4b9ff 29665a2 0e4b9ff 29665a2 0e4b9ff 29665a2 0e4b9ff 29665a2 0e4b9ff 29665a2 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff 29665a2 e7e5c6f 56f8ae3 c728682 29665a2 c728682 29665a2 c728682 29665a2 c728682 29665a2 56f8ae3 29665a2 56f8ae3 29665a2 56f8ae3 29665a2 56f8ae3 29665a2 56f8ae3 29665a2 56f8ae3 29665a2 56f8ae3 29665a2 56f8ae3 29665a2 e7e5c6f 3903d80 0e4b9ff ddbc15b 9c0f969 0e4b9ff 57035a7 0e4b9ff 57035a7 0e4b9ff 57035a7 0e4b9ff 57035a7 0e4b9ff 57035a7 0e4b9ff 57035a7 29665a2 0e4b9ff 9c0f969 e7e5c6f 0e4b9ff 57035a7 e7e5c6f 0e4b9ff e7e5c6f 0e4b9ff c728682 0e4b9ff c728682 0e4b9ff e7e5c6f 0e4b9ff 9c0f969 2a93ac8 0e4b9ff d099a7c 0e4b9ff d099a7c 0e4b9ff d099a7c 0e4b9ff d099a7c 2a93ac8 8a09c11 9c0f969 2a93ac8 9c0f969 d099a7c ddbc15b 2a93ac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
# app.py - Combined Script
# Combined Imports
import os
import gradio as gr
from huggingface_hub import InferenceClient
import torch
import re
import warnings
import time
import json
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer, util, CrossEncoder
import gspread
# from google.colab import auth
from google.auth import default
from tqdm import tqdm
from ddgs import DDGS # Updated import
import spacy
from datetime import date, timedelta, datetime # Import datetime
from dateutil.relativedelta import relativedelta # Corrected typo
import traceback # Import traceback
import base64 # Import base64
import dateparser # Import dateparser
from dateparser.search import search_dates
import pytz # Import pytz for timezone handling
# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Define global variables and load secrets
HF_TOKEN = os.getenv("HF_TOKEN")
# Add a print statement to check if HF_TOKEN is loaded
print(f"HF_TOKEN loaded: {'*' * len(HF_TOKEN) if HF_TOKEN else 'None'}")
SHEET_ID = "19ipxC2vHYhpXCefpxpIkpeYdI43a1Ku2kYwecgUULIw"
GOOGLE_BASE64_CREDENTIALS = os.getenv("GOOGLE_BASE64_CREDENTIALS")
# Initialize InferenceClient
# client = InferenceClient("google/gemma-2-9b-it", token=HF_TOKEN)
# client = InferenceClient("meta-llama/Llama-4-Scout-17B-16E-Instruct", token=HF_TOKEN)
client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct", token=HF_TOKEN)
# Load spacy model for sentence splitting
nlp = None
try:
nlp = spacy.load("en_core_web_sm")
print("SpaCy model 'en_core_web_sm' loaded.")
except OSError:
print("SpaCy model 'en_core_web_sm' not found. Downloading...")
try:
os.system("python -m spacy download en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
print("SpaCy model 'en_core_web_sm' downloaded and loaded.")
except Exception as e:
print(f"Failed to download or load SpaCy model: {e}")
# Load SentenceTransformer for RAG/business info retrieval and semantic detection
embedder = None
try:
print("Attempting to load Sentence Transformer (sentence-transformers/paraphrase-MiniLM-L6-v2)...")
# Use the model provided by the user for semantic detection as well
embedder = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L6-v2") # Or 'all-MiniLM-L6-v2' if preferred
print("Sentence Transformer loaded.")
except Exception as e:
print(f"Error loading Sentence Transformer: {e}")
# Load a Cross-Encoder model for re-ranking retrieved documents
reranker = None
try:
print("Attempting to load Cross-Encoder Reranker (cross-encoder/ms-marco-MiniLM-L6-v2)...")
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
print("Cross-Encoder Reranker loaded.")
except Exception as e:
print(f"Error loading Cross-Encoder Reranker: {e}")
print("Please ensure the model identifier 'cross-encoder/ms-marco-MiniLM-L6-v2' is correct and accessible on Hugging Face Hub.")
print(traceback.format_exc())
reranker = None
# Google Sheets Authentication
gc = None # Global variable for gspread client
def authenticate_google_sheets():
"""Authenticates with Google Sheets using base64 encoded credentials."""
global gc
print("Authenticating Google Account...")
if not GOOGLE_BASE64_CREDENTIALS:
print("Error: GOOGLE_BASE64_CREDENTIALS secret not found.")
return False
try:
# Decode the base64 credentials
credentials_json = base64.b64decode(GOOGLE_BASE64_CREDENTIALS).decode('utf-8')
credentials = json.loads(credentials_json)
# Authenticate using service account from dictionary
gc = gspread.service_account_from_dict(credentials)
print("Google Sheets authentication successful via service account.")
return True
except Exception as e:
print(f"Google Sheets authentication failed: {e}")
print("Please ensure your GOOGLE_BASE64_CREDENTIALS secret is correctly set and contains valid service account credentials.")
print(traceback.format_exc())
return False
# Google Sheets Data Loading and Embedding
data = [] # Global variable to store loaded data
descriptions_for_embedding = []
embeddings = torch.tensor([])
business_info_available = False # Flag to indicate if business info was loaded successfully
def load_business_info():
"""Loads business information from Google Sheet and creates embeddings."""
global data, descriptions_for_embedding, embeddings, business_info_available
business_info_available = False # Reset flag
if gc is None:
print("Skipping Google Sheet loading: Google Sheets client not authenticated.")
return
if not SHEET_ID:
print("Error: SHEET_ID not set.")
return
try:
sheet = gc.open_by_key(SHEET_ID).sheet1
print(f"Successfully opened Google Sheet with ID: {SHEET_ID}")
data_records = sheet.get_all_records()
if not data_records:
print(f"Warning: No data records found in Google Sheet with ID: {SHEET_ID}")
data = []
descriptions_for_embedding = []
else:
# Filter out rows missing 'Service' or 'Description'
filtered_data = [row for row in data_records if row.get('Service') and row.get('Description')]
if not filtered_data:
print("Warning: Filtered data is empty after checking for 'Service' and 'Description'.")
data = []
descriptions_for_embedding = []
else:
data = filtered_data
# Use BOTH Service and Description for embedding
descriptions_for_embedding = [f"Service: {row['Service']}. Description: {row['Description']}" for row in data]
# Only encode if descriptions_for_embedding are found and embedder is available
if descriptions_for_embedding and embedder is not None:
print("Encoding descriptions...")
try:
embeddings = embedder.encode(descriptions_for_embedding, convert_to_tensor=True)
print("Encoding complete.")
business_info_available = True
except Exception as e:
print(f"Error during description encoding: {e}")
embeddings = torch.tensor([])
business_info_available = False
else:
print("Skipping encoding descriptions: No descriptions found or embedder not available.")
embeddings = torch.tensor([])
business_info_available = False
print(f"Loaded {len(descriptions_for_embedding)} entries from Google Sheet for embedding/RAG.")
if not business_info_available:
print("Business information retrieval (RAG) is NOT available.")
except gspread.exceptions.SpreadsheetNotFound:
print(f"Error: Google Sheet with ID '{SHEET_ID}' not found.")
print("Please check the SHEET_ID and ensure your authenticated Google Account has access to this sheet.")
business_info_available = False
except Exception as e:
print(f"An error occurred while accessing the Google Sheet: {e}")
print(traceback.format_exc())
business_info_available = False
# Business Info Retrieval (RAG)
def retrieve_business_info(query: str, top_n: int = 3) -> list:
"""
Retrieves relevant business information from loaded data based on a query.
Args:
query: The user's query string.
top_n: The number of top relevant entries to retrieve.
Returns:
A list of dictionaries, where each dictionary is a relevant row from the
Google Sheet data. Returns an empty list if RAG is not available or
no relevant information is found.
"""
global data
if not business_info_available or embedder is None or not descriptions_for_embedding or not data:
print("Business information retrieval is not available or data is empty.")
return []
try:
query_embedding = embedder.encode(query, convert_to_tensor=True)
cosine_scores = util.cos_sim(query_embedding, embeddings)[0]
top_results_indices = torch.topk(cosine_scores, k=min(top_n, len(data)))[1].tolist()
top_results = [data[i] for i in top_results_indices]
if reranker is not None and top_results:
print("Re-ranking top results...")
rerank_pairs = [(query, descriptions_for_embedding[i]) for i in top_results_indices]
rerank_scores = reranker.predict(rerank_pairs)
reranked_indices = sorted(range(len(rerank_scores)), key=lambda i: rerank_scores[i], reverse=True)
reranked_results = [top_results[i] for i in reranked_indices]
print("Re-ranking complete.")
return reranked_results
else:
return top_results
except Exception as e:
print(f"Error during business information retrieval: {e}")
print(traceback.format_exc())
return []
# Function to perform DuckDuckGo Search and return results with URLs
def perform_duckduckgo_search(query: str, max_results: int = 5): # Reduced max_results for multi-part queries
"""
Performs a search using DuckDuckGo and returns a list of dictionaries.
Includes a delay to avoid rate limits.
Returns an empty list and prints an error if search fails.
"""
print(f"Executing Tool: perform_duckduckgo_search with query='{query}')")
search_results_list = []
try:
time.sleep(1)
with DDGS() as ddgs:
search_query = query.strip()
if not search_query or len(search_query.split()) < 2:
print(f"Skipping search for short query: '{search_query}'")
return []
print(f"Sending search query to DuckDuckGo: '{search_query}'")
results_generator = ddgs.text(search_query, max_results=max_results)
results_found = False
for r in results_generator:
search_results_list.append(r)
results_found = True
print(f"Raw results from DuckDuckGo: {search_results_list}")
if not results_found and max_results > 0:
print(f"DuckDuckGo search for '{search_query}' returned no results.")
elif results_found:
print(f"DuckDuckGo search for '{search_query}' completed. Found {len(search_results_list)} results.")
except Exception as e:
print(f"Error during Duckduckgo search for '{search_query if 'search_query' in locals() else query}': {e}")
print(traceback.format_exc())
return []
return search_results_list
# Define the new semantic date/time detection and calculation function using dateparser
def perform_date_calculation(query: str) -> str or None:
"""
Analyzes query for date/time information using dateparser.
If dateparser finds a date, it returns a human-friendly response string.
Otherwise, it returns None.
It is designed to handle multiple languages and provide the time for East Africa (Tanzania).
"""
print(f"Executing Tool: perform_date_calculation with query='{query}') using dateparser.search_dates")
try:
eafrica_tz = pytz.timezone('Africa/Dar_es_Salaam')
now = datetime.now(eafrica_tz)
except pytz.UnknownTimeZoneError:
print("Error: Unknown timezone 'Africa/Dar_es_Salaam'. Using default system time.")
now = datetime.now()
try:
# Try parsing with Swahili first, then English
found = search_dates(
query,
settings={
"PREFER_DATES_FROM": "future",
"RELATIVE_BASE": now
},
languages=['sw', 'en'] # Prioritize Swahili
)
if not found:
print("dateparser.search_dates could not parse any date/time.")
return None
text_snippet, parsed = found[0]
print(f"dateparser.search_dates found: text='{text_snippet}', parsed='{parsed}'")
is_swahili = any(swahili_phrase in query.lower() for swahili_phrase in ['tarehe', 'siku', 'saa', 'muda', 'leo', 'kesho', 'jana', 'ngapi', 'gani', 'mwezi', 'mwaka'])
# Handle timezone information
if now.tzinfo is not None and parsed.tzinfo is None:
parsed = now.tzinfo.localize(parsed)
elif now.tzinfo is None and parsed.tzinfo is not None:
parsed = parsed.replace(tzinfo=None)
# Check if the parsed date is today and time is close to now or midnight
if parsed.date() == now.date():
# Consider it "now" if within a small time window or if no specific time was parsed (midnight)
if abs((parsed - now).total_seconds()) < 60 or parsed.time() == datetime.min.time():
print("Query parsed to today's date and time is close to 'now' or midnight, returning current time/date.")
if is_swahili:
return f"Kwa saa za Afrika Mashariki (Tanzania), tarehe ya leo ni {now.strftime('%A, %d %B %Y')} na saa ni {now.strftime('%H:%M:%S')}."
else:
return f"In East Africa (Tanzania), the current date is {now.strftime('%A, %d %B %Y')} and the time is {now.strftime('%H:%M:%S')}."
else:
print(f"Query parsed to a specific time today: {parsed.strftime('%H:%M:%S')}")
if is_swahili:
return f"Hiyo inafanyika leo, {parsed.strftime('%A, %d %B %Y')}, saa {parsed.strftime('%H:%M:%S')} saa za Afrika Mashariki."
else:
return f"That falls on today, {parsed.strftime('%A, %d %B %Y')}, at {parsed.strftime('%H:%M:%S')} East Africa Time."
else:
print(f"Query parsed to a specific date: {parsed.strftime('%A, %d %B %Y')} at {parsed.strftime('%H:%M:%S')}")
time_str = parsed.strftime('%H:%M:%S')
date_str = parsed.strftime('%A, %d %B %Y')
if parsed.tzinfo:
tz_name = parsed.tzinfo.tzname(parsed) or 'UTC'
if is_swahili:
return f"Hiyo inafanyika tarehe {date_str} saa {time_str} {tz_name}."
else:
return f"That falls on {date_str} at {time_str} {tz_name}."
else:
if is_swahili:
return f"Hiyo inafanyika tarehe {date_str} saa {time_str}."
else:
return f"That falls on {date_str} at {time_str}."
except Exception as e:
print(f"Error during dateparser.search_dates execution: {e}")
print(traceback.format_exc())
return f"An error occurred while parsing date/time: {e}"
# Function to determine if a query requires a tool or can be answered directly
def determine_tool_usage(query: str) -> str:
"""
Analyzes the query to determine if a specific tool is needed.
Returns the name of the tool ('duckduckgo_search', 'business_info_retrieval',
'date_calculation') or 'none' if no specific tool is clearly indicated.
Prioritizes business information retrieval, then specific tools based on keywords
and LLM judgment.
"""
query_lower = query.lower()
# 1. Prioritize Business Info Retrieval if RAG is available
if business_info_available:
messages_business_check = [{"role": "user", "content": f"Does the following query ask about a specific person, service, offering, or description that is likely to be found *only* within a specific business's internal knowledge base, and not general knowledge? For example, questions about 'Salum' or 'Jackson Kisanga' are likely business-related, while questions about 'the current president of the USA' or 'who won the Ballon d'Or' are general knowledge. Answer only 'yes' or 'no'. Query: {query}"}]
try:
business_check_response = client.chat_completion(
messages=messages_business_check,
max_tokens=10,
temperature=0.1
).choices[0].message.content.strip().lower()
# Ensure the response explicitly contains "yes" and is not just a substring match
if business_check_response == "yes":
print(f"Detected as specific business info query based on LLM check: '{query}'")
return "business_info_retrieval"
else:
print(f"LLM check indicates not a specific business info query: '{query}'")
except Exception as e:
print(f"Error during LLM call for business info check for query '{query}': {e}")
print(traceback.format_exc())
print(f"Proceeding without business info check for query '{query}' due to error.")
# 2. Check for Date Calculation
date_time_check_result = perform_date_calculation(query)
if date_time_check_result is not None:
print(f"Detected as date/time calculation query based on dateparser result for: '{query}'")
return "date_calculation"
# 3. Use LLM to determine if DuckDuckGo search is needed
messages_tool_determination_search = [{"role": "user", "content": f"Does the following query require searching the web for current or general knowledge information (e.g., news, facts, definitions, current events)? Respond ONLY with 'duckduckgo_search' or 'none'. Query: {query}"}]
try:
search_determination_response = client.chat_completion(
messages=messages_tool_determination_search,
max_tokens=20,
temperature=0.1,
top_p=0.9
).choices[0].message.content or ""
response_lower = search_determination_response.strip().lower()
if "duckduckgo_search" in response_lower:
print(f"Model-determined tool for '{query}': 'duckduckgo_search'")
return "duckduckgo_search"
else:
print(f"Model-determined tool for '{query}': 'none' (for search)")
except Exception as e:
print(f"Error during LLM call for search tool determination for query '{query}': {e}")
print(traceback.format_exc())
print(f"Proceeding without search tool check for query '{query}' due to error.")
# 4. If none of the specific tools are determined, default to 'none'
print(f"No specific tool determined for '{query}'. Defaulting to 'none'.")
return "none"
# Function to generate text using the LLM, incorporating tool results if available
def generate_text(prompt: str, tool_results: dict = None) -> str:
"""
Generates text using the configured LLM, optionally incorporating tool results.
Args:
prompt: The initial prompt for the LLM.
tool_results: A dictionary containing results from executed tools.
Keys are tool names, values are their outputs.
Returns:
The generated text from the LLM.
"""
# Add persona instructions to the beginning of the prompt
persona_instructions = """You are absa_ai, an AI developed on August 7, 2025, by the absa team. Your knowledge about business data comes from the company's internal Google Sheet.
"""
full_prompt_builder = [persona_instructions, prompt]
if tool_results and any(tool_results.values()):
full_prompt_builder.append("\n\nTool Results:\n")
for question, results in tool_results.items(): # Iterate through results per question
if results:
full_prompt_builder.append(f"--- Results for: {question} ---\n") # Add question context
if isinstance(results, list):
for i, result in enumerate(results):
# Check if the result is from business info retrieval
if isinstance(result, dict) and 'Service' in result and 'Description' in result:
full_prompt_builder.append(f"Business Info {i+1}:\nService: {result.get('Service', 'N/A')}\nDescription: {result.get('Description', 'N/A')}\n\n")
elif isinstance(result, dict) and 'url' in result: # Check if the result is from DuckDuckGo
full_prompt_builder.append(f"Search Result {i+1}:\nTitle: {result.get('title', 'N/A')}\nURL: {result.get('url', 'N/A')}\nSnippet: {result.get('body', 'N/A')}\n\n")
else:
full_prompt_builder.append(f"{result}\n\n") # Handle other list items
elif isinstance(results, dict):
for key, value in results.items():
full_prompt_builder.append(f"{key}: {value}\n")
full_prompt_builder.append("\n")
else:
full_prompt_builder.append(f"{results}\n\n") # Handle single string results (like date calculation)
full_prompt_builder.append("Based on the provided tool results, answer the user's original query. If a question was answered by a tool, use the tool's result directly in your response.")
print("Added tool results and instruction to final prompt.")
else:
print("No tool results to add to final prompt.")
full_prompt = "".join(full_prompt_builder)
print(f"Sending prompt to LLM:\n---\n{full_prompt}\n---")
generation_config = {
"temperature": 0.7,
"max_new_tokens": 500,
"top_p": 0.95,
"top_k": 50,
"do_sample": True,
}
try:
response = client.chat_completion(
messages=[
{"role": "user", "content": full_prompt}
],
max_tokens=generation_config.get("max_new_tokens", 512),
temperature=generation_config.get("temperature", 0.7),
top_p=generation_config.get("top_p", 0.95)
).choices[0].message.content or ""
print("LLM generation successful using chat_completion.")
return response
except Exception as e:
print(f"Error during final LLM generation: {e}")
print(traceback.format_exc())
return "An error occurred while generating the final response."
# Main chat function with query breakdown and tool execution per question
def chat(query: str):
"""
Processes user queries by breaking down multi-part queries, determining and
executing appropriate tools for each question, and synthesizing results
using the LLM. Prioritizes business information retrieval.
"""
print(f"Received query: {query}")
# Step 1: Query Breakdown
print("\n--- Breaking down query ---")
prompt_for_question_breakdown = f"""
Analyze the following query and list each distinct question found within it.
Present each question on a new line, starting with a hyphen.
Query: {query}
"""
try:
messages_question_breakdown = [{"role": "user", "content": prompt_for_question_breakdown}]
question_breakdown_response = client.chat_completion(
messages=messages_question_breakdown,
max_tokens=100,
temperature=0.1,
top_p=0.9
).choices[0].message.content or ""
individual_questions = [line.strip() for line in question_breakdown_response.split('\n') if line.strip()]
cleaned_questions = [re.sub(r'^[-*]?\s*', '', q) for q in individual_questions]
print("Individual questions identified:")
for q in cleaned_questions:
print(f"- {q}")
except Exception as e:
print(f"Error during LLM call for question breakdown: {e}")
print(traceback.format_exc())
cleaned_questions = [query] # Fallback to treating the whole query as one question
# Step 2: Tool Determination per Question
print("\n--- Determining tools per question ---")
determined_tools = {}
for question in cleaned_questions:
print(f"\nAnalyzing question for tool determination: '{question}'")
determined_tools[question] = determine_tool_usage(question)
print(f"Determined tool for '{question}': '{determined_tools[question]}'")
print("\nSummary of determined tools per question:")
for question, tool in determined_tools.items():
print(f"'{question}': '{tool}'")
# Step 3: Execute Tools and Step 4: Synthesize Results
print("\n--- Executing tools and collecting results ---")
tool_results = {}
for question, tool in determined_tools.items():
print(f"\nExecuting tool '{tool}' for question: '{question}'")
result = None
if tool == "date_calculation":
result = perform_date_calculation(question)
elif tool == "duckduckgo_search":
result = perform_duckduckgo_search(question)
elif tool == "business_info_retrieval":
result = retrieve_business_info(question)
elif tool == "none":
# If tool is 'none', the LLM will answer this part using its internal knowledge
# in the final response generation step. We don't need a specific tool result here.
print(f"Skipping tool execution for question: '{question}' as tool is 'none'. LLM will handle.")
result = None # Set result to None so it's not included in tool_results for 'none' tool
# Only store results if they are not None (i.e., tool was executed and returned something)
if result is not None:
tool_results[question] = result
print("\n--- Collected Tool Results ---")
if tool_results:
for question, result in tool_results.items():
print(f"\nQuestion: {question}")
print(f"Result: {result}")
else:
print("No tool results were collected.")
print("\n--------------------------")
# Step 5: Final Response Generation
print("\n--- Generating final response ---")
# The generate_text function already handles incorporating tool results if provided
final_response = generate_text(query, tool_results)
print("\n--- Final Response from LLM ---")
print(final_response)
print("\n----------------------------")
return final_response
# Keep the Gradio interface setup as is for now
if __name__ == "__main__":
# Authenticate Google Sheets when the script starts
authenticate_google_sheets()
# Load business info after authentication
load_business_info()
# Check if spacy model, embedder, and reranker loaded correctly
if nlp is None:
print("Warning: SpaCy model not loaded. Sentence splitting may not work correctly.")
if embedder is None:
print("Warning: Sentence Transformer (embedder) not loaded. RAG will not be available.")
if reranker is None:
print("Warning: Cross-Encoder Reranker not loaded. Re-ranking of RAG results will not be performed.")
if not business_info_available:
print("Warning: Business information (Google Sheet data) not loaded successfully. "
"RAG will not be available. Please ensure the GOOGLE_BASE64_CREDENTIALS secret is set correctly.")
print("Launching Gradio Interface...")
import gradio as gr
with gr.Blocks(theme="soft") as demo:
gr.Markdown(
"""
# LLM with Tools (DuckDuckGo Search, Date Calculation, Business Info RAG)
Ask me anything! I can perform web searches, calculate dates, and retrieve business information.
"""
)
with gr.Row():
with gr.Column(scale=3):
query = gr.Textbox(
label="Query",
placeholder="Enter your query here....",
lines=3,
interactive=True
)
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
with gr.Column(scale=3):
output = gr.Textbox(
label="Output",
lines=8,
interactive=False
)
# Button actions
submit_btn.click(fn=chat, inputs=query, outputs=output)
clear_btn.click(fn=lambda: "", inputs=None, outputs=output)
try:
demo.launch(debug=True)
except Exception as e:
print(f"Error launching Gradio interface: {e}")
print(traceback.format_exc())
print("Please check the console output for more details on the error.")
|