Spaces:
Running
Running
File size: 23,934 Bytes
5ab1c47 53e825e 59bed52 53e825e 59bed52 53e825e ef7ddb5 5ab1c47 ef7ddb5 59bed52 53e825e 59bed52 53e825e 5ab1c47 53e825e 59bed52 4cd9233 9cd0bee 59bed52 4bce1ec 59bed52 53e825e 59bed52 53e825e 4bce1ec 59bed52 53e825e 59bed52 4bce1ec 59bed52 53e825e 59bed52 4bce1ec 53e825e 59bed52 53e825e 59bed52 53e825e 59bed52 53e825e 786d0b9 53e825e 59bed52 5ab1c47 53e825e 5ab1c47 53e825e 5ab1c47 53e825e 5ab1c47 53e825e 5ab1c47 59bed52 53e825e 59bed52 53e825e c995b58 53e825e 59bed52 53e825e 59bed52 53e825e 59bed52 53e825e 59bed52 53e825e 786d0b9 5ab1c47 786d0b9 5ab1c47 786d0b9 53e825e 5ab1c47 59bed52 53e825e 59bed52 53e825e 59bed52 53e825e 59bed52 53e825e 59bed52 53e825e 59bed52 53e825e ef7ddb5 53e825e 8e4a11c 53e825e 8e4a11c 75c37ad 8e4a11c 53e825e 8e4a11c 53e825e 8e4a11c 53e825e 8e4a11c 53e825e 8e4a11c 53e825e 8e4a11c 53e825e 8af6a66 5ab1c47 8af6a66 5ab1c47 ef7ddb5 db174fd 856b395 db174fd 856b395 5ce83f7 856b395 db174fd 856b395 db174fd 856b395 db174fd 5ce83f7 db174fd 856b395 db174fd 856b395 5ab1c47 8af6a66 786d0b9 5ab1c47 786d0b9 8af6a66 c357a9b 8af6a66 c357a9b 8af6a66 5ab1c47 8af6a66 db174fd 5ab1c47 db174fd 5ab1c47 8af6a66 db174fd 8af6a66 db174fd 8af6a66 856b395 8e4a11c 856b395 5ab1c47 856b395 5ab1c47 856b395 8e4a11c 53e825e 8af6a66 786d0b9 53e825e 786d0b9 856b395 786d0b9 8e4a11c 786d0b9 8e4a11c 786d0b9 8e4a11c 786d0b9 8e4a11c 786d0b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
# This block contains the full combined script.
# It includes all the code from the previous successful steps, ordered correctly.
# Combined Imports
import os
import gradio as gr
from huggingface_hub import InferenceClient
import torch
import re
import warnings
import time
import json
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer, util, CrossEncoder
import gspread
# from google.colab import auth
from google.auth import default
from tqdm import tqdm
from duckduckgo_search import DDGS
import spacy
from datetime import date, timedelta, datetime # Import datetime
from dateutil.relativedelta import relativedelta
import traceback
import base64
import pytz # Import pytz for timezone handling
# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Define global variables and load secrets
HF_TOKEN = os.getenv("HF_TOKEN")
SHEET_ID = "19ipxC2vHYhpXCefpxpIkpeYdI3a1Ku2kYwecgUULIw"
GOOGLE_BASE64_CREDENTIALS = os.getenv("GOOGLE_BASE64_CREDENTIALS")
# Initialize InferenceClient
client = InferenceClient("google/gemma-2-9b-it", token=HF_TOKEN)
# Load spacy model for sentence splitting
nlp = None
try:
nlp = spacy.load("en_core_web_sm")
print("SpaCy model 'en_core_web_sm' loaded.")
except OSError:
print("SpaCy model 'en_core_web_sm' not found. Downloading...")
try:
os.system("python -m spacy download en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
print("SpaCy model 'en_core_web_sm' downloaded and loaded.")
except Exception as e:
print(f"Failed to download or load SpaCy model: {e}")
# Load SentenceTransformer for RAG/business info retrieval
embedder = None
try:
print("Attempting to load Sentence Transformer (sentence-transformers/paraphrase-MiniLM-L6-v2)...")
embedder = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L6-v2")
print("Sentence Transformer loaded.")
except Exception as e:
print(f"Error loading Sentence Transformer: {e}")
# Load a Cross-Encoder model for re-ranking retrieved documents
reranker = None
try:
print("Attempting to load Cross-Encoder Reranker (cross-encoder/ms-marco-MiniLM-L6-v2)...")
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
print("Cross-Encoder Reranker loaded.")
except Exception as e:
print(f"Error loading Cross-Encoder Reranker: {e}")
print("Please ensure the model identifier 'cross-encoder/ms-marco-MiniLM-L6-v2' is correct and accessible on Hugging Face Hub.")
print(traceback.format_exc())
reranker = None
# Google Sheets Authentication
gc = None # Global variable for gspread client
def authenticate_google_sheets():
"""Authenticates with Google Sheets using base64 encoded credentials."""
global gc
print("Authenticating Google Account...")
if not GOOGLE_BASE64_CREDENTIALS:
print("Error: GOOGLE_BASE64_CREDENTIALS secret not found.")
return False
try:
# Decode the base64 credentials
credentials_json = base64.b64decode(GOOGLE_BASE64_CREDENTIALS).decode('utf-8')
credentials = json.loads(credentials_json)
# Authenticate using service account from dictionary
gc = gspread.service_account_from_dict(credentials)
print("Google Sheets authentication successful via service account.")
return True
except Exception as e:
print(f"Google Sheets authentication failed: {e}")
print("Please ensure your GOOGLE_BASE64_CREDENTIALS secret is correctly set and contains valid service account credentials.")
print(traceback.format_exc())
return False
# Google Sheets Data Loading and Embedding
data = [] # Global variable to store loaded data
descriptions_for_embedding = []
embeddings = torch.tensor([])
business_info_available = False # Flag to indicate if business info was loaded successfully
def load_business_info():
"""Loads business information from Google Sheet and creates embeddings."""
global data, descriptions_for_embedding, embeddings, business_info_available
business_info_available = False # Reset flag
if gc is None:
print("Skipping Google Sheet loading: Google Sheets client not authenticated.")
return
if not SHEET_ID:
print("Error: SHEET_ID not set.")
return
try:
sheet = gc.open_by_key(SHEET_ID).sheet1
print(f"Successfully opened Google Sheet with ID: {SHEET_ID}")
data_records = sheet.get_all_records()
if not data_records:
print(f"Warning: No data records found in Google Sheet with ID: {SHEET_ID}")
data = []
descriptions_for_embedding = []
else:
# Filter out rows missing 'Service' or 'Description'
filtered_data = [row for row in data_records if row.get('Service') and row.get('Description')]
if not filtered_data:
print("Warning: Filtered data is empty after checking for 'Service' and 'Description'.")
data = []
descriptions_for_embedding = []
else:
data = filtered_data
# Use BOTH Service and Description for embedding
descriptions_for_embedding = [f"Service: {row['Service']}. Description: {row['Description']}" for row in data]
# Only encode if descriptions_for_embedding are found and embedder is available
if descriptions_for_embedding and embedder is not None:
print("Encoding descriptions...")
try:
embeddings = embedder.encode(descriptions_for_embedding, convert_to_tensor=True)
print("Encoding complete.")
business_info_available = True # Set flag if successful
except Exception as e:
print(f"Error during description encoding: {e}")
embeddings = torch.tensor([]) # Ensure embeddings is an empty tensor on error
business_info_available = False # Encoding failed
else:
print("Skipping encoding descriptions: No descriptions found or embedder not available.")
embeddings = torch.tensor([]) # Ensure embeddings is an empty tensor
business_info_available = False # Cannot use RAG without descriptions or embedder
print(f"Loaded {len(descriptions_for_embedding)} entries from Google Sheet for embedding/RAG.")
if not business_info_available:
print("Business information retrieval (RAG) is NOT available.")
except gspread.exceptions.SpreadsheetNotFound:
print(f"Error: Google Sheet with ID '{SHEET_ID}' not found.")
print("Please check the SHEET_ID and ensure your authenticated Google Account has access to this sheet.")
business_info_available = False # Sheet not found
except Exception as e:
print(f"An error occurred while accessing the Google Sheet: {e}")
print(traceback.format_exc())
business_info_available = False # Other sheet access error
# Business Info Retrieval (RAG)
def retrieve_business_info(query: str, top_n: int = 3) -> list:
"""
Retrieves relevant business information from loaded data based on a query.
Args:
query: The user's query string.
top_n: The number of top relevant entries to retrieve.
Returns:
A list of dictionaries, where each dictionary is a relevant row from the
Google Sheet data. Returns an empty list if RAG is not available or
no relevant information is found.
"""
global data
if not business_info_available or embedder is None or not descriptions_for_embedding or not data:
print("Business information retrieval is not available or data is empty.")
return []
try:
query_embedding = embedder.encode(query, convert_to_tensor=True)
cosine_scores = util.cos_sim(query_embedding, embeddings)[0]
top_results_indices = torch.topk(cosine_scores, k=min(top_n, len(data)))[1].tolist()
top_results = [data[i] for i in top_results_indices]
if reranker is not None and top_results:
print("Re-ranking top results...")
rerank_pairs = [(query, descriptions_for_embedding[i]) for i in top_results_indices]
rerank_scores = reranker.predict(rerank_pairs)
reranked_indices = sorted(range(len(rerank_scores)), key=lambda i: rerank_scores[i], reverse=True)
reranked_results = [top_results[i] for i in reranked_indices]
print("Re-ranking complete.")
return reranked_results
else:
return top_results
except Exception as e:
print(f"Error during business information retrieval: {e}")
print(traceback.format_exc())
return []
# Function to perform DuckDuckGo Search and return results with URLs
def perform_duckduckgo_search(query: str, max_results: int = 5):
"""
Performs a search using DuckDuckGo and returns a list of dictionaries.
Includes a delay to avoid rate limits.
Returns an empty list and prints an error if search fails.
"""
print(f"Executing Tool: perform_duckduckgo_search with query='{query}')")
search_results_list = []
try:
time.sleep(1)
with DDGS() as ddgs:
if not query or len(query.split()) < 2:
print(f"Skipping search for short query: '{query}'")
return []
results_generator = ddgs.text(query, max_results=max_results)
results_found = False
for r in results_generator:
search_results_list.append(r)
results_found = True
if not results_found and max_results > 0:
print(f"DuckDuckGo search for '{query}' returned no results.")
except Exception as e:
print(f"Error during Duckduckgo search for '{query}': {e}")
return []
return search_results_list
# Function to perform date calculation if needed
def perform_date_calculation(query: str):
"""
Analyzes query for date calculation requests and performs the calculation.
Returns a dict describing the calculation and result, or None.
Handles formats like 'X days ago', 'X days from now', 'X weeks ago', 'X weeks from now', 'what is today's date'.
Uses dateutil for slightly more flexibility (though core logic remains simple).
"""
print(f"Executing Tool: perform_date_calculation with query='{query}')")
query_lower = query.lower()
# Use datetime.now(timezone).date() with an explicit timezone
try:
# Using UTC as a default timezone, you can change this based on your needs
tz = pytz.timezone("UTC")
today = datetime.now(tz).date()
print(f"[DEBUG] Current system date used: {today}")
except Exception as e:
print(f"Error getting timezone-aware date: {e}")
# Fallback to date.today() if timezone handling fails
today = date.today()
print(f"[DEBUG] Falling back to date.today(): {today}")
result_date = None
calculation_description = None
if re.search(r"\btoday'?s date\b|what is today'?s date\b|what day is it\b", query_lower):
result_date = today
calculation_description = f"The current date is: {today.strftime('%Y-%m-%d')}"
print(f"Identified query for today's date.")
return {"query": query, "description": calculation_description, "result": result_date.strftime('%Y-%m-%d'), "success": True}
match = re.search(r"(\d+)\s+(day|week|month|year)s?\s+(ago|from now)", query_lower)
if match:
value = int(match.group(1))
unit = match.group(2)
direction = match.group(3)
try:
if unit == 'day':
delta = timedelta(days=value)
elif unit == 'week':
delta = timedelta(weeks=value)
elif unit == 'month':
delta = relativedelta(months=value)
elif unit == 'year':
delta = relativedelta(years=value)
else:
desc = f"Could not understand the time unit '{unit}' in '{query}'."
print(desc)
return {"query": query, "description": desc, "result": None, "success": False, "error": desc}
if direction == 'ago':
result_date = today - delta
calculation_description = f"Calculating date {value} {unit}s ago from {today.strftime('%Y-%m-%d')}: {result_date.strftime('%Y-%m-%d')}"
elif direction == 'from now':
result_date = today + delta
calculation_description = f"Calculating date {value} {unit}s from now from {today.strftime('%Y-%m-%d')}: {result_date.strftime('%Y-%m-%d')}"
print(f"Performed date calculation: {calculation_description}")
return {"query": query, "description": calculation_description, "result": result_date.strftime('%Y-%m-%d'), "success": True}
except OverflowError:
desc = f"Date calculation overflow for query: {query}"
print(f"Date calculation overflow for query: {query}")
return {"query": query, "description": desc, "result": None, "success": False, "error": desc}
except Exception as e:
desc = f"An error occurred during date calculation for query '{query}': {e}"
print(desc)
return {"query": query, "description": desc, "result": None, "success": False, "error": str(e)}
desc = "No specific date calculation pattern recognized."
print(f"No specific date calculation pattern found in query: '{query}'")
return {"query": query, "description": desc, "result": None, "success": False}
# Function to identify questions using spaCy
def identify_questions(message: str) -> list[str]:
"""
Identifies potential questions in the user's message using spaCy.
Args:
message: The user's input string.
Returns:
A list of strings, where each string is an identified question.
"""
if nlp is None:
print("SpaCy model not loaded, cannot identify questions.")
return [message]
doc = nlp(message)
questions = []
for sent in doc.sents:
if sent.text.strip().endswith('?'):
questions.append(sent.text.strip())
if not questions and message.strip():
print("No specific questions identified, treating entire message as query.")
questions.append(message.strip())
return questions
# Function to classify questions
def classify_question(question: str) -> dict:
"""
Classifies a question as 'business', 'general', or 'date' based on RAG results
or date calculation pattern.
Args:
question: The question string.
Returns:
A dictionary containing the question and its classification,
including calculation result for 'date' questions.
"""
date_calculation_result = perform_date_calculation(question)
if date_calculation_result and date_calculation_result['success']:
print(f"Question '{question}' classified as 'date'. Date calculation pattern found.")
return {'question': question, 'type': 'date', 'retrieved_info': [], 'calculation_result': date_calculation_result['result']}
retrieved_info = retrieve_business_info(question, top_n=1)
if retrieved_info:
print(f"Question '{question}' classified as 'business'. Retrieved info found.")
return {'question': question, 'type': 'business', 'retrieved_info': retrieved_info}
else:
print(f"Question '{question}' classified as 'general'. No relevant info found.")
return {'question': question, 'type': 'general', 'retrieved_info': []}
def create_model_prompt(system_message: str, processed_questions_with_context: list, history: list) -> list:
"""
Creates a detailed prompt for the model based on the system message,
classified questions with context, and conversation history.
Args:
system_message: The base system message (now includes persona).
processed_questions_with_context: List of dictionaries with questions,
types, retrieved info, and calculation results.
history: Conversation history.
Returns:
A list of messages in ChatML format to be sent to the model.
"""
messages = [{"role": "system", "content": system_message}]
for user_msg, bot_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": "The user has asked one or more questions. Process each question individually based on its type (business, general, or date). For business questions, use the provided context. For general questions, use your internal knowledge. FOR DATE QUESTIONS, USE THE PROVIDED DATE *DIRECTLY* in your answer. Combine your answers into a single, coherent response, clearly addressing each question. If you cannot answer a question, state that you are unable and explain why if possible. Ensure your final response directly addresses the user's queries without unnecessary preamble or repetition of the original full query. You have access to a date calculation tool whose results are provided for 'date' type questions."})
for item in processed_questions_with_context:
question = item['question']
question_type = item['type']
retrieved_info = item.get('retrieved_info', [])
calculation_result = item.get('calculation_result', None)
prompt_content = f"**Question:** {question}\n**Question Type:** {question_type}\n"
if question_type == 'business' and retrieved_info:
context_message = "Relevant Business Information (use this to answer if applicable):\n"
for i, info in enumerate(retrieved_info):
context_message += f"--- Business Info Entry {i+1} ---\n"
for key, value in info.items():
context_message += f"{key}: {str(value)}\n"
context_message += "---\n"
prompt_content += context_message
print(f"Added business context for question: '{question}'")
elif question_type == 'business' and not retrieved_info and business_info_available:
prompt_content += "No highly relevant business information found for this specific question in the loaded data. Please answer based on general knowledge if possible, or state that business information is not available for this query."
print(f"No relevant business context found for business question: '{question}'")
elif question_type == 'business' and not business_info_available:
prompt_content += "Business information is not available. Please answer based on general knowledge if possible."
print(f"Business information not available for business question: '{question}'")
elif question_type == 'date' and calculation_result is not None:
prompt_content += f"Calculated Date: {calculation_result}\nUse this date to answer the question."
print(f"Added calculated date result for question: '{question}')")
elif question_type == 'general':
prompt_content += "This is a general knowledge question. Answer it using your internal knowledge."
print(f"Handling general question: '{question}'")
else:
prompt_content += "Unable to process this question with available tools or information."
print(f"Unable to process question: '{question}' (Type: {question_type})")
messages.append({"role": "user", "content": prompt_content})
messages.append({"role": "user", "content": "Now, synthesize the answers to all the above questions into a single, coherent, and polite response. Address each question clearly. Do not repeat the original full query. If you could not answer a specific question, mention that."})
return messages
# Chat handler function
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
identified_questions = identify_questions(message)
print(f"Identified questions for processing: {identified_questions}")
processed_questions_with_context = []
for question in identified_questions:
classification_result = classify_question(question)
question_type = classification_result['type']
retrieved_info = classification_result.get('retrieved_info', [])
calculation_result = classification_result.get('calculation_result', None)
if question_type == 'business':
enhanced_retrieved_info = retrieve_business_info(question, top_n=5)
print(f"Enhanced RAG results for business question '{question}': {len(enhanced_retrieved_info)} items retrieved.")
processed_questions_with_context.append({
'question': question,
'type': question_type,
'retrieved_info': enhanced_retrieved_info,
'calculation_result': None
})
elif question_type == 'date':
print(f"Date calculation result for '{question}': {calculation_result}")
processed_questions_with_context.append({
'question': question,
'type': question_type,
'retrieved_info': [],
'calculation_result': calculation_result
})
else:
processed_questions_with_context.append({
'question': question,
'type': question_type,
'retrieved_info': [],
'calculation_result': None
})
print(f"Processed questions with enhanced context/calculation results: {processed_questions_with_context}")
messages = create_model_prompt(system_message, processed_questions_with_context, history)
response = ""
try:
result = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=False,
temperature=temperature,
top_p=top_p,
)
response = result.choices[0].message.content or ""
print(f"Generated combined response: {response[:200]}...")
yield response
except Exception as e:
print(f"Error generating combined response: {e}")
print(traceback.format_exc())
yield f"An error occurred while generating the combined response: {e}"
# Gradio interface
print(f"RAG functionality available: {business_info_available}")
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are FutureAi, a helpful AI developed by the Futuresony team in October 2024. Use the provided business information as if it is from your company.", label="System message"),
gr.Slider(1, 2048, value=512, step=1, label="Max new tokens"),
gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top‑p (nucleus sampling)"),
],
title="Gemma‑2‑9B‑IT Chat with RAG",
description="Chat with Google Gemma‑2‑9B‑IT via Hugging Face Inference API, with business info retrieved from Google Sheets.",
)
demo.queue()
if __name__ == "__main__":
if authenticate_google_sheets():
load_business_info()
else:
print("Google Sheets authentication failed. RAG functionality will not be available.")
print(f"RAG functionality available: {business_info_available}")
demo.launch() |