Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchaudio | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
from ttsmms import download, TTS | |
from langdetect import detect | |
from gradio_client import Client | |
# ========================= | |
# Load ASR Model | |
# ========================= | |
asr_model_name = "Futuresony/Future-sw_ASR-24-02-2025" | |
# asr_model_name = "openai/whisper-large-v3-turbo" | |
processor = Wav2Vec2Processor.from_pretrained(asr_model_name) | |
asr_model = Wav2Vec2ForCTC.from_pretrained(asr_model_name) | |
# ========================= | |
# Load Text Generation Model via Gradio Client | |
# ========================= | |
llm_client = Client("Futuresony/Mr.Events") | |
# ========================= | |
# Load TTS Models | |
# ========================= | |
swahili_dir = download("swh", "./data/swahili") | |
english_dir = download("eng", "./data/english") | |
swahili_tts = TTS(swahili_dir) | |
english_tts = TTS(english_dir) | |
# ========================= | |
# ASR Function | |
# ========================= | |
def transcribe(audio_file): | |
speech_array, sample_rate = torchaudio.load(audio_file) | |
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) | |
speech_array = resampler(speech_array).squeeze().numpy() | |
input_values = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_values | |
with torch.no_grad(): | |
logits = asr_model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids)[0] | |
return transcription | |
# ========================= | |
# Text Generation Function (Safe) | |
# ========================= | |
def generate_text(prompt): | |
print(f"[DEBUG] Generating text for prompt: {prompt} (type: {type(prompt)})") | |
result = llm_client.predict(query=prompt, api_name="/chat") | |
print(f"[DEBUG] /chat returned: {result} (type: {type(result)})") | |
# Ensure result is always a string | |
if not isinstance(result, str): | |
try: | |
result = " ".join(map(str, result)) if isinstance(result, (list, tuple)) else str(result) | |
except Exception as e: | |
print(f"[ERROR] Failed to convert result to string: {e}") | |
result = "Error: Unable to generate text." | |
return result.strip() | |
# ========================= | |
# TTS Function | |
# ========================= | |
def text_to_speech(text): | |
print(f"[DEBUG] Converting text to speech: {text} (type: {type(text)})") | |
lang = detect(text) | |
wav_path = "./output.wav" | |
try: | |
if lang == "sw": | |
swahili_tts.synthesis(text, wav_path=wav_path) | |
else: | |
english_tts.synthesis(text, wav_path=wav_path) | |
except Exception as e: | |
print(f"[ERROR] TTS synthesis failed: {e}") | |
return None | |
return wav_path | |
# ========================= | |
# Combined Processing Function | |
# ========================= | |
def process_audio(audio): | |
print(f"[DEBUG] Processing audio: {audio} (type: {type(audio)})") | |
transcription = transcribe(audio) | |
print(f"[DEBUG] Transcription: {transcription}") | |
generated_text = generate_text(transcription) | |
print(f"[DEBUG] Generated Text: {generated_text}") | |
speech_path = text_to_speech(generated_text) | |
print(f"[DEBUG] Speech Path: {speech_path}") | |
return transcription, generated_text, speech_path | |
# ========================= | |
# Gradio Interface | |
# ========================= | |
with gr.Blocks() as demo: | |
gr.Markdown("<p align='center' style='font-size: 20px;'>End-to-End ASR, Text Generation, and TTS</p>") | |
gr.HTML("<center>Upload or record audio. The model will transcribe, generate a response, and read it out.</center>") | |
audio_input = gr.Audio(label="Input Audio", type="filepath") | |
text_output = gr.Textbox(label="Transcription") | |
generated_text_output = gr.Textbox(label="Generated Text") | |
audio_output = gr.Audio(label="Output Speech") | |
submit_btn = gr.Button("Submit") | |
submit_btn.click( | |
fn=process_audio, | |
inputs=audio_input, | |
outputs=[text_output, generated_text_output, audio_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |